Scottish Natural Heritage Commissioned Report No. 808

2014 site condition monitoring survey and biotope mapping of the intertidal sediment flats of the Kentra Bay and Moss SSSI







## COMMISSIONED REPORT

**Commissioned Report No. 808** 

## 2014 site condition monitoring survey and biotope mapping of the intertidal sediment flats of the Kentra Bay and Moss SSSI

For further information on this report please contact:

Laura Steel Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725236 E-mail: laura.steel@snh.gov.uk

This report should be quoted as:

Moore, C.G., Lyndon, A.R., Harries, D.B., Tulbure, K.W. & Brash, J. 2015. 2014 site condition monitoring survey and biotope mapping of the intertidal sediment flats of the Kentra Bay and Moss SSSI. *Scottish Natural Heritage Commissioned Report No. 808.* 

This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage.

© Scottish Natural Heritage 2015.

# COMMISSIONED REPORT

### 2014 site condition monitoring survey and biotope mapping of the intertidal sediment flats of the Kentra Bay and Moss SSSI

Commissioned Report No. 808 Project No: 14988 Contractor: Heriot-Watt University Year of publication: 2015

#### Keywords

Benthos; mudflat; sandflat; monitoring; survey; biotope; mapping.

#### Background

In addition to terrestrial and saltmarsh features, Kentra Bay and Moss SSSI is also noted for its sediment flats, which form one of the most extensive areas of this feature on the coast of the western highlands. The principal purpose of the current study (2014) was to carry out site condition monitoring (SCM) of the site in order to identify any deterioration in the condition of the mudflat feature and to form a judgement on its current condition. SCM was inaugurated at this site in 2003, which provides a baseline for the current study. The approach taken to achieve this aim was to resurvey the representative, relocatable transects established in 2003.

As there has been no previous mapping of the distribution of sediment flat habitats within the SSSI, this formed an additional objective of the current study. The SCM survey results were therefore supplemented by additional ground truthing to map the distribution of sediment flat biotopes.

#### Main findings

- There was no evidence for a decline in the extent of the mudflat feature within the SSSI.
- All biotopes recorded during the baseline survey were still present within the SSSI in 2014. There was little temporal change in the distribution of biotopes. Localised changes in the presence of two biotopes, LS.LSa.FiSa.Po and LS.LBR.Lmus.Myt.Sa, are considered to have resulted from natural temporal variability in hydrodynamic conditions and in the success of the *Lanice conchilega* and *Mytilus edulis* populations.
- There was no reduction in the frequency of occurrence of the positive indicator species, Arenicola marina, Hediste diversicolor, Scrobicularia plana and Cerastoderma edule. A slight perceived reduction in Corophium volutator may have resulted from natural temporal variability or possibly misidentification of corophiid material during the baseline survey.

- The invasive alga, Sargassum muticum, was recorded at one monitoring station. However, the low density indicated that it should not be considered to be causing a reduction in the condition of the habitat.
- Little temporal change in sediment composition, topography, or depth of the anoxic layer was recorded. Such changes that were observed are consistent with natural variability.
- No significant impacts on the condition of the feature from anthropogenic activities were observed. A recorded instance of sediment removal from the shore at Arivegaig prior to 2013 appears to have led to no significant localised reduction in the condition of the habitat.
- The conclusion from the 2014 SCM survey is that the mudflat feature of the Kentra Bay and Moss SSSI should be assigned to the condition category "Favourable Maintained".
- Biotope mapping of the sediment flats revealed the presence of 11 sedimentary biotopes, although most of the outer, more exposed, half of the flats was occupied by LS.LSa.FiSa.Po, with LS.LSa.MuSa.MacAre dominating the inner half of the flats. The most sheltered and innermost regions of the SSSI supported LS.LSa.MuSa.HedMacEte, LS.LMu.MEst.HedMac, LS.LMu.MEst.HedMacScr and LS.LMx.GvMu.HedMx. Three, relatively sparse mussel beds (LS.LBR.LMus.Myt.Sa) were recorded.
- Two examples of priority marine features were encountered during the survey work. Egg wrack beds (LR.LLR.FVS.Ascmac) were recorded at three locations and one specimen of the native oyster, *Ostrea edulis*, at a single location.

For further information on this project contact: Laura Steel, Scottish Natural Heritage, Great Glen House, Inverness, IV3 8NW. Tel: 01463 725236 or laura.steel@snh.gov.uk For further information on the SNH Research & Technical Support Programme contact: Knowledge & Information Unit, Scottish Natural Heritage, Great Glen House, Inverness, IV3 8NW. Tel: 01463 725000 or research@snh.gov.uk

| 1.                                                                                                                                | INTROD            | DUCTION                                         | 1  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|----|--|--|--|
| 2.                                                                                                                                | METHO             | DS                                              | 4  |  |  |  |
|                                                                                                                                   | 2.1               | Site condition monitoring                       | 4  |  |  |  |
|                                                                                                                                   | 2.2               | Biotope mapping                                 | 5  |  |  |  |
| 3.                                                                                                                                | RESUL             | rs                                              | 7  |  |  |  |
| -                                                                                                                                 | 3.1               | Site condition monitoring                       | 7  |  |  |  |
|                                                                                                                                   | 3.1.1             | Transect KA (Figure 4)                          | 9  |  |  |  |
|                                                                                                                                   | 3.1.2             | Transect KB (Figure 5)                          | 10 |  |  |  |
|                                                                                                                                   | 3.1.3             | Transect KC (Figure 6)                          | 11 |  |  |  |
|                                                                                                                                   | 3.1.4             | Transect KD (Figure 7)                          | 12 |  |  |  |
|                                                                                                                                   | 3.1.5             | Transect KE (Figure 8)                          | 13 |  |  |  |
|                                                                                                                                   | 3.2               | Biotope mapping                                 | 14 |  |  |  |
|                                                                                                                                   | 3.3               | Anthropogenic impacts                           | 16 |  |  |  |
| 4.                                                                                                                                | DISCUS            | SION                                            | 19 |  |  |  |
|                                                                                                                                   | 4.1               | Extent                                          | 19 |  |  |  |
|                                                                                                                                   | 4.2               | Sediment character: sediment type               | 19 |  |  |  |
|                                                                                                                                   | 4.3               | Sediment character: oxidation reduction profile | 20 |  |  |  |
|                                                                                                                                   | 4.4               | Biotope composition                             | 21 |  |  |  |
|                                                                                                                                   | 4.5               | Distribution and spatial pattern of biotopes    | 21 |  |  |  |
|                                                                                                                                   | 4.0               | Presence or abundance of specified species      | 21 |  |  |  |
|                                                                                                                                   | 4.7               |                                                 | 22 |  |  |  |
|                                                                                                                                   | 4.0<br>1 0        | Overall condition accossment                    | 23 |  |  |  |
|                                                                                                                                   | 4.9               | Recommendations                                 | 23 |  |  |  |
| 5.                                                                                                                                | REFERI            | ENCES                                           | 24 |  |  |  |
| ANN                                                                                                                               | EX 1: SI          | TE CONDITION MONITORING DATA                    | 26 |  |  |  |
| ANNEX 2: SITE ATTRIBUTE TABLE FOR THE MUDFLAT FEATURE OF KENTRA<br>BAY AND MOSS SSSI, WITH THE RESULTS OF THE 2014 SITE CONDITION |                   |                                                 |    |  |  |  |
| MON                                                                                                                               | MONITORING SURVEY |                                                 |    |  |  |  |
| ANNEX 3: BIOTOPE MAPPING DATA - TARGET NOTES                                                                                      |                   |                                                 |    |  |  |  |
| ANNEX 4: PHOTO AND VIDEO LOGS 6                                                                                                   |                   |                                                 |    |  |  |  |

#### Acknowledgements

We would like to thank Laura Steel (SNH) for her contribution to the planning and management of this survey and Eoina Rogers (SNH) for assistance with the fieldwork.

#### 1. INTRODUCTION

Kentra Bay and Moss is a Site of Special Scientific Interest (SSSI), notified in March 1990 under the Wildlife and Countryside Act 1981. Located immediately to the north of the Ardnamurchan peninsula on the Scottish west coast (Figure 1), it comprises a total area of 997.3 ha, including raised mire, saltmarsh, woodland and tidal flats. The tidal sedimentary areas represent one of the most extensive examples of tidal flats on the coast of north-west Scotland, and they are consequently of some importance as a wintering area for wading birds and wildfowl. It is these tidal flat habitats which are the focus of this report.



© Crown copyright and database rights [2015] Ordnance Survey 100017908.

Figure 1. Location and map of Kentra Bay, showing SCM transects. The position of transect stations is shown in red, and permanent transect markers in blue.

The principal objective of the work described in this report was to carry out site condition monitoring (SCM) of the Kentra Bay and Moss SSSI in order to assess the condition of the notified mudflats feature. In order to promote a uniform approach to the monitoring of the condition of features, guidance has been drawn up on the general approach to be taken in condition monitoring (JNCC, 1998) and for specific habitats, such as littoral sediment (JNCC, 2004). JNCC (2004) lists ten attributes of littoral sediment habitats and corresponding targets that could form the basis of site condition monitoring (Table 1). These targets have been incorporated into the monitoring plan for the SSSI and are detailed in the Site Attribute Table (Annex 2).

| Attribute                                                           | Target                                                                                                         |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Extent                                                              | No change in extent of littoral sediment habitat                                                               |
| Biotope composition                                                 | Maintain the variety of biotopes identified for the site                                                       |
| Distribution of biotopes                                            | Maintenance of the distribution of biotopes                                                                    |
| Sediment character: sediment type                                   | No change in composition of sediment types across the feature                                                  |
| Sediment character: redox layer                                     | Black layer depth should not deviate in relation to the baseline                                               |
| Sediment character: organic carbon content                          | Organic carbon content should not increase in relation to baseline                                             |
| Extent of sub-feature                                               | No change in extent of the littoral sediment biotope(s) identified for the site                                |
| Species composition of representative or notable biotopes           | No decline in biotope quality as a result<br>of change in species composition or<br>removal of notable species |
| Species population measures:<br>- population structure of a species | Maintain age/size class structure of a (named) species.                                                        |
| <ul> <li>presence or abundance of specified species</li> </ul>      | Maintain presence or abundance of positive indicator species.                                                  |
|                                                                     | No increase in presence or abundance of negative indicator species.                                            |
| Topography                                                          | No alteration in topography of the littoral sediment                                                           |

Table 1. Generic attributes that should be used to define the condition of littoral sediment features in SCM. The first four are mandatory. Targets exclude naturally-induced changes.

A further aim of the 2014 work was to produce a biotope map of the littoral sediment habitats of the SSSI.

Prior to 2003 there is a single biotope record in Marine Recorder relating to the intertidal sediment flats of Kentra Bay. Powell *et al.* (1980) examined the flats during a 1979 survey of the shores of north-west Scotland. Their description of the area has been interpreted in Marine Recorder as indicating the presence of the biotope **LS.LSa.FiSa.Po** over much of the bay.

A baseline SCM survey was carried out in 2003 (Lyndon *et al.*, 2004), involving the establishment of a series of 16 relocatable stations along five transects across the sediment flats. These were believed to reflect the biological and environmental diversity of the sedimentary habitats (Figure 1). Each transect was initially divided into a number of zones that appeared to represent the different shore levels, substrates and possible biotopes, with a sample station identified within each zone. At each station one 3.4 cm diameter core sample was taken for particle size analysis and eight pooled 10.3 cm diameter cores for faunal analysis, which was supplemented by a 1 m<sup>2</sup> dig-over. The depth of the anaerobic layer was recorded and photos and videos taken, including five replicate photo quadrats of the sediment surface. The transect profile was measured using a surveyor's level to record height and distance of all stations and zone boundaries from the permanent transect marker, and to record the height in relation to sea level, and hence chart datum.

Ten sediment flat biotopes were recorded in 2003. Muddy, estuarine habitats were restricted to the innermost and most sheltered region of the bay (LS.LMu.UEst.Hed, LS.LMu.MEst.HedMacScr) and to the top of the shore in the south-west (LS.LMu.MEst.HedMac), both areas being in close proximity to sources of freshwater. Most of the bay was floored by slightly silty sand, with a tendency for LS.LSa.FiSa.Po to occur in the lower and more exposed regions and LS.LSa.MuSa.CerPo and LS.LSa.MuSa.MacAre in the higher and more sheltered parts. A mussel bed with fairly sparse clumps of *Mytilus edulis* on gravelly sand (LS.LBR.LMus.Myt.Sa) was recorded at one station and a denser bed nearby.

Kentra Bay is situated in a relatively remote location, with only relatively small-scale centres of habitation and industry within the catchment. The SSSI is currently unlikely to be under major threat from anthropogenic activities, although there are some possible sources of influence. For instance, there is periodic access to the intertidal flats by tourists and there is evidence of quad-bikes using the mudflats (Lyndon *et al.*, 2004).

There is also evidence of historic dumping of refuse, in particular old cars, on the shore, which may, in addition to any direct impact, encourage further tipping in the same area Lyndon *et al.*, 2004). An act of tyre dumping is known to have taken place prior to March 2012 at Arivegaig at the head of Kentra Bay (SNH, pers. comm.). The tyres were placed along the margins of a ditch outflow and at the saltmarsh/sediment flat interface and partly covered with sediment removed from the adjacent mudflat. The sediment removal led to the creation of craters discernible in 2012 and 2013 (Figure 11B). The tyres were subsequently largely removed, which may have resulted in additional damage.

#### 2. METHODS

#### 2.1 Site condition monitoring

The methodology followed that employed in the 2003 baseline survey (Lyndon *et al.*, 2004). Survey transects were worked at the same five locations (Figure 1), with a total of 16 stations, representing perceived different habitat zones, relocated along the transects using dGPS. Although the notified sediment flat feature for the Kentra Bay and Moss SSSI is 'mudflats', mudflat biotopes graded into sandflat biotopes along some of the transects and so both habitat types were considered to fall within the remit of the 2014 survey work (see Discussion section for further comment). Some minor adjustment of station positions was necessary to ensure they were lined up along the transect, as they were in 2003. Zone boundaries from 2003 were also relocated and marked, as were any perceived changes in these boundaries. Alignment was checked using a surveyor's level. Initial slight misalignment was probably due to GPS error.

The vertical height of stations and all zone boundaries was determined relative to the permanent transect marker at the head of the transect using a surveyor's level. As the transect markers had been levelled to the water's edge in 2003, all heights could be expressed in relation to chart datum. The surveyor's level was also employed to measure the horizontal distances of stations and boundaries from the transect marker. However, a few errors were later noted in some of the greater distances, so these were checked against distances determined from dGPS positions, and adjusted where necessary.

At each station, eight cores of 10.3 cm diameter and 15 cm depth were taken for analysis of the infauna, along with a single core of 3.4 cm diameter and 20 cm depth for particle size analysis (PSA). The eight infaunal cores were pooled in a single bucket and sieved on site using a 1 mm mesh. These samples were preserved in 5% buffered formalin in seawater until analysis. The PSA samples were transferred from the core to labelled polythene gripseal bags and kept in these until analysis. At one station on each transect four replicate samples for infaunal analysis were taken, the stations being selected to represent the range of habitats present. Each sample consisted of eight pooled cores, as above.

At each station a record was made of any surficial biota by photographing five replicate, randomly placed 0.25 m<sup>2</sup> quadrats, and by noting incidental visual records. In addition, approximately 1 m<sup>2</sup> of sediment was dug-over, using a spade, to a depth of about 30 cm to check for the presence of any infauna which might not have been effectively sampled by the cores (e.g. larger bivalves and polychaetes), and estimates of their density made using the SACFOR semi-quantitative scale (Hiscock, 1996). Specimens from this dig-over were noted and some retained for confirmation of identity.

All position fixing employed the WGS84 datum.

The macrobenthos from the core samples was sorted, identified and counted by Sue Hamilton (Currie, Midlothian). All other faunal samples were processed by Colin Moore.

The silt/clay fraction of the sediment samples was separated by puddling a sample of known weight, which had been soaked overnight in sodium hexametaphosphate (6.2 g/l in distilled water), through a 63  $\mu$ m sieve. Sediment retained on this sieve was oven dried and then dry sieved using a sieve stack of -4 to 4 phi at 0.5 phi intervals. The sediment grain size parameters, median grain size and phi quartile deviation, were obtained by interpolation of the cumulative weight percentage curves.

Beach profiles, based on surveyor's level measurements of intertidal height and range were graphed using Microsoft Excel.

Based on the physico-chemical characteristics of the sediment and the characterisation of the fauna obtained from cores and *in situ* observations, each transect station, and the zone along the transect represented by that station, was assigned a biotope according to the 2004 habitat classification system (Connor *et al.*, 2004). To aid this process and to facilitate temporal comparisons with data from the baseline survey, species data for all stations were transformed to the SACFOR abundance scale and investigated using non-metric multidimensional scaling of the SACFOR abundances employing Bray-Curtis similarity and Primer software (Primer-E Ltd, Ivybridge).

#### 2.2 Biotope mapping

To aid biotope mapping aerial imagery was available from May 2007 and July 2013. As the more recent material was recorded close to high tide, the 2007 imagery was largely used within ArcGIS 9.3 for preparation of a wireframe map of the sediment flats, which involved their division into 26 polygons (Figure 2). This was based on regional variation in the appearance of the imagery, which was assumed to, at least in part, reflect variation in habitat type. Data from the 2003 SCM transects (Lyndon *et al.*, 2004) was also used in the process.

The wireframe map with aerial imagery was available in the field on a series of laminated sheets. It was also uploaded to a large-screen, sunlight-readable, differential GPS receiver (Garmin Montana 600). One team of 2 - 3 recorders surveyed the area, largely within three hours either side of low water springs by walking each of the polygons where possible. employing target notes at fixed locations to record the characteristics of the habitat (Figure 2, Annex 3 - Table 3.1). Where appropriate, descriptions of habitats between target point positions were also recorded, with the surveyors' track continuously recorded by a GPS data logger. Field data collected to aid subsequent biotope identification included physical habitat characteristics, biotic surface features and the infauna revealed by digging over an area of c. 1 m<sup>2</sup>, with retention of specimens where necessary for laboratory identification. In many cases it was also felt necessary to supplement dig-over material by sieving sediment from an area of c. 0.07 m<sup>2</sup> (based on spade width measurements) using a 1 mm mesh. Field observations were supplemented by still and video photography. The wireframe laminates were used for sketching the distribution of perceived habitats in the field and to aid investigation of conspicuous features on the aerial imagery. In general, biotope ascription to areas was deferred until the results of infaunal analysis were available and, in view of the limited information available at individual target sites, biotopes were assigned to areas, rather than individual sites. Preliminary sketches of the distribution of biotopes were produced within ArcGIS 10.2 using the drawing facility, with the finalised map converted into biotope polygons. To provide context, the adjacent saltmarsh habitat was incorporated into the final map based on the results of a June 2012 SNH survey. The biotope mapping GIS project employed the OSGB 1936 coordinate system and British National Grid projection.



© Crown copyright and database rights [2015] Ordnance Survey 100017908. Aerial imagery © Getmapping plc.

Figure 2. Wire frame map of Kentra Bay overlying 2007 aerial imagery, showing numbered polygons in yellow, 2014 target note sites (red markers), 2014 human impact record sites (pink markers) and 2014 SCM stations (blue markers).

#### 3. RESULTS

#### 3.1 Site condition monitoring

Profile, positional and sedimentary information recorded along the transects are given in Table 1.1 (Annex 1), while the transect profiles, together with those from the 2003 baseline survey, are graphed in Figures 4 - 8, which also show the transect zones with allocated biotopes. The results from particle size analysis of the sediment at each transect station are given in detail in Table 1.2 (Annex 1), graphed in Figures 1.1 - 1.5 (Annex 1) and presented as summary descriptors in Table 1.3 (Annex 1).

Infaunal abundance from core sampling is shown in Table 1.4 (Annex 1) and SACFOR estimates of the abundance of biota from surface observations and the digging over of sediment in Table 1.5 (Annex 1). These data sets have been combined and expressed as SACFOR values in Table 1.6 (Annex 1). As replicate core samples had been taken at certain stations, to ensure consistency between stations and between years only the first core of replicate series has been used in producing this table.



Figure 3. Non-metric multidimensional scaling ordination of macrofaunal abundance data (transformed to SACFOR scale) from Kentra Bay SCM transect stations from the current survey and from the 2003 baseline survey. Station labels are colour coded to correspond with the assigned biotopes. Baseline survey station labels have the suffix 'B'.

MDS ordination of the SACFOR values from this latter table is presented in Figure 3, which also includes the data from the 2003 survey. This clearly shows the difference in species composition between the more exposed sites in the outer and central region of the sediment flats on the right of the plot, and the more sheltered sites on the left. This plot aided biotope ascription and some clustering of similar biotope records is apparent, although final biotope ascription took into account specific characterising species and environmental factors.

Taxon richness values at survey stations are compared for both 2003 and 2014 in Table 2. As not all taxa were grouped in the same way in both years (e.g. oligochaetes), the data are expressed using the 2003 taxon groupings.

| Station | Survey |      |  |  |  |
|---------|--------|------|--|--|--|
|         | 2003   | 2014 |  |  |  |
| KA1     | 12     | 4    |  |  |  |
| KA2     | 20     | 30   |  |  |  |
| KA3     | 20     | 33   |  |  |  |
| KB1     | 16     | 13   |  |  |  |
| KB2     | 17     | 15   |  |  |  |
| KB3     | 14     | 8    |  |  |  |
| KC1     | 12     | 10   |  |  |  |
| KC2     | 17     | 18   |  |  |  |
| KC3     | 18     | 19   |  |  |  |
| KC4     | 8      | 10   |  |  |  |
| KD1     | 12     | 7    |  |  |  |
| KD2     | 22     | 15   |  |  |  |
| KD3     | 13     | 20   |  |  |  |
| KE1     | 15     | 14   |  |  |  |
| KE2     | 17     | 19   |  |  |  |
| KE3     | 15     | 16   |  |  |  |

Table 2. Taxon richness recorded at the SCM transect stations in 2003 and 2014.

The biotope mapping survey (Section 3.2) provided an improved understanding of the biotope composition in Kentra Bay and this facilitated a revision of the biotopes ascribed to the transect stations in 2003. The original and revised biotopes, together with those allocated in 2014 are provided in Table 3.

Table 3. Original and revised biotopes assigned to the SCM transect stations in the 2003 baseline survey and in 2014.

| Station | 2003 (original)       | 2003 (revised)        | 2014                  |
|---------|-----------------------|-----------------------|-----------------------|
| KA1     | LS.LSa.FiSa.Po        | LS.LSa.FiSa.Po        | LS.LSa.MoSa.AmSco.Eur |
| KA2     | LS.LSa.FiSa.Po.Ncir   | LS.LSa.FiSa.Po        | LS.LSa.MuSa.Lan       |
| KA3     | LS.LSa.MuSa.Lan       | LS.LSa.MuSa.Lan       | LS.LSa.MuSa.Lan       |
| KB1     | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |
| KB2     | LS.LSa.MuSa.CerPo     | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |
| KB3     | LS.LSa.FiSa.Po        | LS.LSa.FiSa.Po        | LS.LSa.FiSa.Po        |
| KC1     | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |
| KC2     | LS.LSa.MuSa.HedMacEte | LS.LSa.MuSa.HedMacEte | LS.LSa.MuSa.HedMacEte |
| KC3     | LS.LBR.LMus.Myt.Sa    | LS.LBR.LMus.Myt.Sa    | LS.LSa.MuSa.HedMacEte |
| KC4     | LS.LSa.FiSa.Po        | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |
| KD1     | LS.LMu.UEst.Hed       | LS.LMu.MEst.HedMac    | LS.LMu.MEst.HedMac    |
| KD2     | LS.LMu.MEst.HedMacScr | LS.LMu.MEst.HedMacScr | LS.LMu.MEst.HedMacScr |
| KD3     | LS.LMu.MEst.HedMacScr | LS.LMu.MEst.HedMacScr | LS.LMu.MEst.HedMacScr |
| KE1     | LS.LMu.MEst.HedMac    | LS.LMu.MEst.HedMacScr | LS.LMu.MEst.HedMacScr |
| KE2     | LS.LSa.MuSa.CerPo     | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |
| KE3     | LS.LSa.MuSa.CerPo     | LS.LSa.MuSa.MacAre    | LS.LSa.MuSa.MacAre    |

#### 3.1.1 Transect KA (Figure 4)

The transect contained a short upper region of dry, unconsolidated, medium sand supporting a sparse fauna including *Eurydice pulchra* and *Scolelepis squamata* (LS.LSa.MoSa.AmSco.Eur). This gave way to a region of moist, rippled medium sand with scattered maerl gravel supporting large numbers of *Lanice conchilega* (LS.LSa.MuSa.Lan). This biotope continued into the lowest zone, where the sediment became waterlogged. In addition to *Lanice*, the sediment here supported sparse *Sargassum muticum* attached to stones and shell material.

There was little temporal change in the profile of the transect, apart from a loss of around 30 cm of sediment on the lower shore. Sediment composition changed very little between the survey years (Table 1.3, Annex 1).

Figure 4 shows the relatively large temporal change in species composition at stations KA1 and KA2, although these are in fact reflections of diversity differences, with a temporal reduction in taxon richness at KA1 from 12 to 4 and increase at KA2 from 20 to 30. KA3 also showed an increase from 20 to 33. A two-way analysis of variance (ANOVA) revealed no overall significant change in diversity along the transect as a whole.

Temporal differences in biotopes were recorded within the upper two zones of the shore. Whereas in 2003 LS.LSa.FiSa.Po extended throughout this region, as a result of upshore encroachment of the *Lanice* population, most of this area in 2014 was assigned to LS.LSa.MuSa.Lan. The faunally impoverished band of dry sand at the top of the shore (LS.LSa.MoSa.AmSco.Eur) was not recorded in 2003, although contemporaneous photographs suggest that a much narrower strip of this habitat may have been present in that year, below which the sand appears to be damper and more compacted than in 2014.



Figure 4. Comparison of profiles of transect KA in 2014 (red) and 2003 (blue), showing component zones, delineated by vertical lines, and corresponding biotopes.

Connor *et al.*, (2004) comment that the infauna of the biotope recorded along most of the transect in 2003 (**LS.LSa.FiSa.Po**) may be affected significantly by seasonal changes in the

degree of wave action, with winter storms causing destabilisation of sediment and faunal loss. This transect is located in the most wave-exposed region of the Kentra sediment flats within an area of undulating sand banks and close to expanses of megarippled sediment, visible on the aerial imagery. Recorded temporal changes in the physical and biological conditions along the transect are consistent with natural variation that one would expect at such a hydrodynamic location.

#### 3.1.2 Transect KB (Figure 5)

The transect runs for much of its length through the northern sheltered embayment at Gobshealach, where it was split into an upper zone of slightly muddy fine sand and a lower zone of medium sand. In both zones the waterlogged sediment displayed a similar fauna (see Figure 5), dominated by abundant *Arenicola marina* and *Cerastoderma edule*, and including *Macoma balthica*, *Peringia ulvae* and *Nephtys hombergii* (LS.LSa.MuSa.MacAre). The transect continued south of the bay onto the more exposed central region of Kentra flats, where the sediment of clean medium sand lost *Macoma* and *Peringia* but included amphipods and polychaetes suggestive of LS.LSa.FiSa.Po. Although the characteristic polychaete, *Nephtys cirrosa*, was not recorded here in 2014, it was found in the same area during the biotope mapping exercise and was recorded here in 2003.



Figure 5. Comparison of profiles of transect KB in 2014 (red) and 2003 (blue), showing component zones, delineated by vertical lines, and corresponding biotopes.

There was little temporal change in the transect profile (Figure 5), apart from some movement in the course of the channel at the bottom of the transect. Sediment composition (Table 1.3, Annex 1) and the sequence and distribution of biotopes were similar in both years. ANOVA revealed no significant temporal difference in taxon richness values along the transect as a whole, although at station KB3 only 8 taxa were recorded in 2014 compared to 14 in 2003. (Table 2). The replicated core sample data (Table 1.4, Annex 1) shows that this level of difference is present even between replicate samples at the same site.

#### 3.1.3 Transect KC (Figure 6)

The transect passed through an area of predominantly medium sand but including elevated banks where the sand was covered in varying amounts of scattered gravel. Waterlogged, slightly muddy sand at the top and bottom of the shore supported a similar fauna (see Figure 6) of low diversity (10 taxa) including abundant *Arenicola marina*, with *Cerastoderma edule*, *Nephtys hombergii*, *Pygospio elegans* and oligochaetes (LS.LSa.MuSa.MacAre). Two drier, gravelly sand zones around the middle of the transect harboured a similar fauna, but one that was distinct from that of the wetter top and bottom zones (Figure 6). This was of higher diversity (20 - 21 taxa) and, although containing the same dominant taxa found in the sand patches, the density of *Arenicola* was depressed, but it was accompanied by *Hediste diversicolor*, *Capitella capitata*, *Corophium volutator* and, at KC2, which was slightly muddy, *Eteone longa* (LS.LSa.MuSa.HedMacEte). The gravel banks were separated by a small patch of muddy sand that was not sampled but is probably referable to LS.LSa.MuSa.MacAre.



Figure 6. Comparison of profiles of transect KC in 2014 (red) and 2003 (blue), showing component zones, delineated by vertical lines, and corresponding biotopes.

The sequence and distribution of biotopes along the transect is almost exactly the same as that found in 2003 (Figure 6). The only exception is that the lower gravel bank in 2003 supported a sparse mussel bed (**LS.LBR.LMus.Myt.Sa**), although otherwise the fauna was similar (Figure 6). Mussels were also present in 2014 but were only occasional at station KC3, although elsewhere in the zone they were locally frequent. Lyndon *et al.* (2004) reported the presence of a dense mussel bed, starting approximately 15 m west of station KC3 in 2003. The biotope mapping survey recorded the presence of a mussel bed, where *Mytilus edulis* was common, around 80 m to the west of KC3, so some localised reduction in *Mytilus* density appears to have taken place. Taxon richness values recorded along the transect were very similar in 2003 and 2014 (Table 2). In 2014 a member of the public brought the attention of the surveyors to a live specimen of the native oyster, *Ostrea edulis*, that had been found in the vicinity of station KC4. This species is a priority marine feature (see SNH, 2014).

The transect profile in 2014 closely mirrored that in 2003. A slight offset of around 17 cm is likely to be due to a minor difference in the location of the start of the transect, due to the disappearance of the marker stake. It should be noted that a large height difference (1.08 m) was recorded between station KC2 and the upper boundary of this zone in 2003. Inspection of contemporaneous photographic imagery of the transect and recalculation of the tidal height of KC2 based on time-stamped video footage of the imminent flooding of the station, indicates that the true height difference was probably 0.08 m, a figure which has been employed in constructing Figure 6. Some temporal change in gravel content of the sediment was recorded along the transect, with maximum change at KC4, where there was a reduction of 23% and a concomitant increase in sand content (Table 1.3, Annex 1). Such a difference might be expected from natural translocation along a transect exhibiting scattered gravel patches.

#### 3.1.4 Transect KD (Figure 7)

At the top of this transect saltmarsh, with a small creek at its lower edge, gave way to a shore of waterlogged, muddy sand with scattered gravel. Three zones were recognised. The lower two zones supported a similar fauna (Figure 7) of fairly dense *Scrobicularia plana*, together with *Arenicola marina*, *Hediste diversicolor*, *Peringia ulvae*, *Corophium volutator*, *Cerastoderma edule* and oligochaetes. These zones have been ascribed to the biotope **LS.LMu.MEst.HedMacScr**. The lower zone (KD3) was of firmer sediment with a mud content of only 5% (Table 1.3, Annex 1), atypically low for the biotope. The uppermost zone had a similar, but relatively impoverished fauna supporting only 7 taxa, in comparison to 15 - 20 for the lower zones (Table 2). In particular, *Arenicola* was absent and *Scrobicularia* much sparser. Although Table 1.6 (Annex 1) records *Scrobicularia* as common here, this is based on the first of four replicate cores. *Scrobicularia* was absent in the three remaining cores and in the sediment dig-over. *Hediste diversicolor* was abundant here and *Macoma balthica* common. The zone has been assigned to the biotope **LS.LMu.MEst.HedMac**.



Figure 7. Comparison of profiles of transect KD in 2014 (red) and 2003 (blue), showing component zones, delineated by vertical lines, and corresponding biotopes.

The transect profile, as well as the sequence and distribution of biotopes (Figure 7) and taxon richness (Table 2) closely match those recorded in 2003. Species composition in the

lower two zones are similar in both years, although a green algal mat present in zone KD2 was absent in 2014. There was a greater temporal disparity in species composition in the upper zone (Figure 7). In 2003 the composition was relatively closer to that of the lower zones with more shared species, such as *Arenicola marina* and *Pygospio elegans*.

Sediment composition along the transect was similar in both survey years, except for an increase in the mud content of 23% at station KD2 (Table 1.3, Annex 1). Given that Lyndon *et al.* (2004) noted the presence of a sandier sediment layer at about 4 cm depth, the localised recorded change at KD2 may reflect spatial variability in the depth of this coarser stratum.

#### 3.1.5 Transect KE (Figure 8)

A band of waterlogged, flat muddy sand with scattered cobbles occupied the upper shore supporting dense *Scrobicularia plana*, *Arenicola marina*, *Peringia ulvae* and *Hediste diversicolor* (LS.LMu.MEst.HedMacScr). This upper zone gave way to a region of waterlogged, slightly muddy sand with scattered cobbles and a patchy coverage by a filamentous green algal mat. The fauna was similar to that of the upper zone, although the abundance of *Hediste* and *Scrobicularia* were much reduced. This area has been assigned to the biotope LS.LSa.MuSa.MacAre, although it appears to be intermediate between this biotope and LS.LMu.MEst.HedMacScr of the adjacent zone, as might be expected from the proximity of the perceived zonal boundary (Figure 8). With further progression down the shore cobbles were lost, the algal mat reduced in density, and the sand was formed into dense *Arenicola* hummocks, with *Cerastoderma edule*, *Macoma balthica* and a patchy green algal mat also present (LS.LSa.MuSa.MacAre).



Figure 8. Comparison of profiles of transect KE in 2014 (red) and 2003 (blue), showing component zones, delineated by vertical lines, and corresponding biotopes.

No temporal change in the sequence of biotopes along the transect is apparent (Figure 8), although the perceived lower boundary of the **LS.LMu.MEst.HedMacScr** zone has extended downshore by around 30 m. Taxon richness values recorded at all three stations are very similar in both survey years (Table 2). There are no marked temporal changes in species

composition within the zones, apart from the lack of penetration of the green algal mat into the uppermost zone in 2014, where it covered 70% of the sediment in 2003. Sediment composition varied little between surveys (Table 1.3, Annex 1).

The only apparently significant temporal change in the transect profile was observed at the bottom of the transect. The height recorded at the channel edge was 40 cm lower in 2014; however, this may merely reflect the volume of water in the channel at the times of measurement.

#### 3.2 Biotope mapping

Habitat descriptions recorded at target note sites are provided in Tables 3.1 and 3.2 (Annex 3) and the resulting biotope map given in Figure 9.

Much of the outer half of Kentra flats was dominated by LS.LSa.FiSa.Po, which occupied the more exposed areas. The sediment was composed principally of clean fine sand formed into ripples, which were superimposed upon megaripples locally. The fauna was characterised by polychaetes, especially *Nephtys cirrosa*, maldanids and *Scoloplos armiger*, amphipods such as species of *Bathyporeia*, and *Angulus tenuis*. *Arenicola marina* was generally present (common) but at lower densities than the more sheltered parts of the flats. While *Lanice conchilega* was often also present at low density, it became common within a narrow depressed embayment of medium sand between sand banks to seaward of Eileanan Dubh (LS.LSa.MuSa.Lan). On the upper shore here there was a small region of dry, unconsolidated, medium sand supporting a sparse fauna including *Eurydice pulchra* and *Scolelepis squamata* (LS.LSa.MoSa.AmSco.Eur).

**LS.LSa.MuSa.MacAre** occupied most of the inner half of Kentra flats, including much of the major embayments of Camas Clachach, at Kentra and at Gobshealach. The sediment was largely one of slightly muddy fine sand formed into dense hummocks by *Arenicola marina* and supporting pink bacterial patches locally, although rippled clean fine sand was also present in more exposed areas, including to the south of Kentra, where it graded into **LS.LSa.FiSa.Po**. The sediment had a superficial oxidised layer (<1 cm) and supported a fauna characterised by abundant *A. marina*, together with *Nephtys hombergii, Cerastoderma edule* and, at a minority of sites, *Macoma balthica*. This biotope was also recognised in more sheltered regions of the outer part of Kentra Bay such as in the moorings area off the pier at Ardtoe. North of Eileanan nan Gad this biotope enclosed three pockets of mussel beds (**LS.LBR.LMus.Myt.Sa**), where the sand supported moderate densities of *Mytilus edulis* (common). The beds were small with extents of 0.55, 0.45 and 0.11 ha.

The upper shore in the northern bay at Gobshealach consisted of flat fine sand, largely slightly muddy, where the *Arenicola* population was reduced (generally F-C) and was accompanied by *Hediste diversicolor* and *Cerastoderma edule* (LS.LSa.MuSa.HedMacEte). The head of the bay on the opposite southern shore of the flats (Camas Clachach) exhibited muddy to very muddy sand also populated by *H. diversicolor* and *Arenicola marina*, but accompanied by *Scrobicularia plana* (C) (LS.LMu.MEst.HedMacScr).



© Crown copyright and database rights [2015] Ordnance Survey 100017908.

Figure 9. Distribution of sediment flat biotopes and adjacent habitat types within Kentra Bay and Moss SSSI.

The two major sources of freshwater into Kentra Bay are two burns at the head of the bay, Faodhail Bhan at Kentra and Allt Beithe at Arivegaig. At the mouth of the Faodhail Bhan an extensive area of fine sand (LS.LSa.MuSa.MacAre) was interrupted by raised patches of gravel on sand. Some of these patches were found to support a similar, though relatively impoverished, fauna (LS.LMx), whereas others supported *Hediste diversicolor* and *Eteone longa* and have been ascribed to LS.LSa.MuSa.HedMacEte. These dense gravel patches continued into the less saline upper reaches of the estuary, where they formed a mosaic with fine sand, slightly muddy in places. The fine sand community was dominated by *Hediste diversicolor*, *Arenicola marina* and *Corophium volutator* (LS.LSa.MuSa.HedMacEte), with *Arenicola* penetrating the channel to the highest part of the estuary surveyed. Gravel patches harboured a similar fauna, though often accompanied by scattered fucoid algae, especially *Fucus vesiculosus* (LS.LMx.GvMu.HedMx).

At the mouth of the Allt Beithe clean fine sand in the area of the channel east of Eileanan nan Gad, probably subject to enhanced current speeds, supported an impoverished community dominated by *Arenicola marina*, with *Fucus vesiculosus* present on scattered stones. This is regarded as representing a poor example of **LS.LSa.MuSa.MacAre**. Farther upstream, the sand gave way to predominantly muddy sand, densely hummocked by *A. marina*, accompanied by dense *Scrobicularia plana*, with *Hediste diversicolor*, *Nephtys hombergii* and *Macoma balthica* (**LS.LMu.MEst.HedMacScr**). Muddy sand continued onto the upper shore in this region, but at least along the southern side of the channel, *A. marina* and *S. plana* were sparse or absent (**LS.LMu.MEst.HedMac**). West of Arivegaig, particularly on the eastern side of the channel the muddy sand sediment supporting dense *S. plana* (**LS.LMu.MEst.HedMacScr**) formed a mosaic with slightly elevated patches of dense gravel and pebbles, populated by *H. diversicolor*, *Corophium volutator* and oligochaetes (**LS.LMx.GvMu.HedMx**).

In the region of the Arivegaig bridge a heterogeneous substrate of gravel, pebbles and cobbles in the channel and on muddy sand on the channel banks supported a sward of *Fucus ceranoides* (LR.LLR.FVS.Fcer). Patches of mud with scattered gravel, pebbles and cobbles were populated by *Hediste diversicolor* and *Corophium volutator*, with an epifauna including *Neomysis integer* and *Carcinus maenas* (LS.LMx.GvMu.HedMx.Cvol).

Mixed substrate reef biotopes including **LR.LLR.F.Fves.X** and **LR.LLR.F.Asc.X** were widely observed along the upper margin of sediment biotopes within Kentra Bay, although these were generally not mapped. Exceptions were made, however, where these formed mosaics with the *Ascophyllum nodosum* ecad *mackaii* biotope, **LR.LLR.FVS.Ascmac**, as these egg wrack beds are a priority marine feature (see SNH, 2014). They were recorded at three locations in Camas Clachach, generally as small patches, but an extensive area (approximately 50 x 8 m) of superabundant *A. nodosum mackaii* was observed at one site (K14.54 - see also Figure 2).

#### 3.3 Anthropogenic impacts

During the biotope mapping of Kentra Bay, evidence of human activities with the potential to cause habitat disturbance was observed at a number of locations (Table 4, Figure 2).

A single bait digger was encountered during the survey, probably targeting *Alitta* (*=Neanthes*) *virens*, large specimens of which were present in the area. Small boat moorings for about five vessels were present in the sheltered embayment off the pier near Ardtoe. At least some of these dry at low tide. A mooring for a small polystyrene raft was located at the mouth of the burn, Faodhail Bhan. In the same vicinity three features were observed that appeared to be the remains of crude forms of oyster trestles: a farm gate (Figure 10, left, background), a gate with metal grating resting on stones (Figure 10, right), and a wooden pallet with assorted ironwork and two nets, probably for oysters (Figure 10,

left, foreground). None of the above mentioned activities or features appeared to be causing significant damage to the sediment flats, merely highly localised disturbance, although the intensity of bait digging is unknown.

Table 4. Human usage of the Kentra sediment flats observed during the 2014 survey. Site code is that used in Figure 2.

| Feature/activity              | Location                              | Site code | Latitude | Longitude | Date       |
|-------------------------------|---------------------------------------|-----------|----------|-----------|------------|
| Bait digging                  | East of Eilean Dubh                   | B1        | 56.75962 | -5.86878  | 12/08/2014 |
| Moorings                      | Ardtoe Pier                           | M1        | 56.76188 | -5.87166  | 12/08/2014 |
| Mooring                       | Mouth of Faodhail<br>Bhan, off Kentra | M2        | 56.75172 | -5.84463  | 15/08/2014 |
| Oyster trestles               | Mouth of Faodhail<br>Bhan, off Kentra | OT1       | 56.75204 | -5.84495  | 15/08/2014 |
| Sediment craters<br>and tyres | Arivegaig                             | SC1       | 56.74307 | -5.8453   | 15/08/2014 |

The site of tyre dumping and sediment removal at Arivegaig (see Introduction) was examined during the current survey and 13 - 16 craters were still visible (Figure 11). Most were around 2 m in diameter and water-filled to a depth of approximately 5 - 7 cm and occupied an area of muddy sand flat of  $32 \times 20$  m. Tyres were still present in the adjacent creek in 2014, eight of them being partly visible along a 20 m stretch of the creek bank (Figure 11A).

Several of the craters appeared to act as sinks for fucoid algae (Figure 11D). Table 5 shows the fauna present within single core samples taken within one of the larger craters and in an adjacent control area. Bearing in mind the level of difference one might expect between replicate samples taken from the same habitat, this provides little indication of a marked difference in composition or diversity. Although *Corophium volutator* was lacking in the crater sample, its presence within craters was recorded in the field. In view of the results from these two core samples, additional samples taken from a further four craters and control areas have not been analysed.

| Species              | Crater | Control |
|----------------------|--------|---------|
| Hediste diversicolor | 12     | 44      |
| Pygospio elegans     | 1      | 1       |
| Baltidrilus costata  |        | 2       |
| Tubificoides benedii | 6      | 16      |
| Enchytraeidae spp.   | 1      |         |
| Gammarus salinus     | 1      | 1       |
| Corophium volutator  |        | 13      |
| Crangon crangon      | 2      |         |
| Chironomidae spp.    | 1      |         |
| Peringia ulvae       |        | 1       |
| Cerastoderma edule   | 2      |         |

Table 5. Abundance of infauna in single core samples of area 0.028  $m^2$  taken within and 1.5 m distant from one of the sediment craters at Arivegaig.



Figure 10. Presumed crude oyster trestles observed off Kentra.



Aerial imagery at B © Getmapping plc

Figure 11. Tyre dumping and sediment crater site at Arivegaig. A, tyre-lined creek; B, aerial imagery of sediment craters; C, view of craters looking south-west; D, close-up of crater. Aerial imagery from 21/07/2013, other images from 15/08/2014.

#### 4. DISCUSSION

The notified sediment flat feature for the Kentra Bay and Moss SSSI is termed 'mudflats'. The extent of this feature can be seen in Figure 9, where it includes the mud (**LS.LMu**) and muddy sand (**LS.LSa.MuSa**) biotopes. However, there is a gradation between muddy sand and clean sand biotopes and it is suggested that consideration be given to also notifying the ecologically linked 'sandflats' present in this site. Both mudflat and sandflat biotopes were incorporated into the 2003 baseline SCM survey (Lyndon *et al.*, 2004) and this broader approach has been retained in the 2014 SCM work.

Existing guidance proposes that monitoring of the condition of littoral sediment features should consider ten attributes of which four require compulsory assessment (JNCC, 2004). Eight attributes have been selected for monitoring within the Kentra Bay and Moss SSSI by SNH and these are listed in Annex 2 of this report.

Following monitoring of the feature, its condition is assessed by assignment to one of seven categories (SNH, 2010):

- Favourable Maintained the attribute targets set for the natural features have been met, and the natural feature is likely to be secure on the site under present conditions.
- Favourable Recovered the condition of the natural feature has recovered from a previous unfavourable condition, and attribute targets are now being met.
- Unfavourable Recovering one or more of the attribute targets have not been met on the site, but management measures are in place to improve the condition.
- Unfavourable No Change one or more of the attribute targets have not been met, and recovery is unlikely under the present management or other activity on the site.
- Unfavourable Declining one or more of the attribute targets have not been met, evidence suggests that condition will worsen unless remedial action is taken.
- Partially Destroyed something has happened on the site which has removed part of the natural features, there is no prospect of restoring the destroyed area.
- Totally Destroyed the natural feature is no longer present, there is no prospect of restoring it.

This section derives an assessment of condition following consideration of the degree to which the targets set for each of the measured attributes have been met. For each attribute, the targets, methods for assessment of adherence to the target, and the results of assessment are summarised in Annex 2.

#### 4.1 Extent

No activities have been identified that are likely to have caused a change in the extent of the mudflat feature in Kentra Bay. The transect profiles also indicate that there has been no reduction in extent of the habitat at the few locations examined.

#### 4.2 Sediment character: sediment type

The Site Attribute Table sets a target limit for temporal change in sediment composition of +/- 10% for sand and silt/clay. This figure was exceeded at only two stations. An increase in sand content of 22% at station KC4 is explicable in terms of natural translocation of gravel material in a region with patches of scattered gravel (concomitant 23% loss of gravel recorded). An increase in recorded silt/clay content of 23% at station KD2 may have arisen through spatial variability in the depth of the sandier stratum underlying the surface muddy sand layer (Lyndon *et al.*, 2004). While real temporal change in the composition of the

surficial sediment layer cannot be discounted, there is no evidence to implicate non-natural factors in the causation of such a localised change.

#### 4.3 Sediment character: oxidation reduction profile

The Site Attribute Table sets a target limit for temporal change in the depth of the black layer at +/- 50% of the baseline figure for sites with a baseline value of >1 cm. This target is exceeded at two stations in 2014 (Table 6). The large change at KA1 will reflect changes in sediment compaction, moisture and oxygen permeability presumed to arise from natural temporal variation at this relatively highly hydrodynamic location. The change at station KC2 is minor. Considering the methodology of measurement, by visual estimation of colour change, and the fact that during the biotope mapping survey the depth of the black layer was seen to vary by several centimetres at the same station, the scale of the recorded difference at KC2 is not considered significant. The depth of the black layer is known to vary seasonally (Gray, 1981) and to respond to variations in factors such as temperature (Ankar and Jansson, 1973). At no station was there a reduction in the black layer depth of more than 0.4 cm. This is indicative of the absence of a temporal increase in organic enrichment.

Marked increases in the depth of the black layer occurred at four stations where the baseline depth value was <1 cm (KB2, KC1, KD2, KE2). At the sites showing the greatest change of 1.7 - 2.8 cm (respectively KE2 and KD2) the presence of a dense green algal mat was recorded in 2003 but was sparse or absent in 2014. The presence of algal mats is known to influence the depth of the black layer in intertidal sediments (Sundback and McGlathery, 2005). The temporal change in algal cover may have arisen from a number of factors including temperature, light, nutrients and wind conditions, as well as the later timing of the baseline survey at the end of August.

| Station | Depth of black layer (cm) |      | Change (cm) | Change (%) |
|---------|---------------------------|------|-------------|------------|
|         | 2003                      | 2014 |             |            |
| KA1     | 1.2                       | 48.0 | 46.8        | 3900       |
| KA2     | 15.0                      | 19.0 | 4.0         | 27         |
| KA3     | 1.4                       | 1.0  | -0.4        | -29        |
| KB1     | 0.3                       | 0.5  | 0.2         | 67         |
| KB2     | 0.4                       | 2.0  | 1.6         | 400        |
| KB3     | 2.2                       | 2.0  | -0.2        | -9         |
| KC1     | 0.2                       | 1.5  | 1.3         | 650        |
| KC2     | 1.2                       | 2.0  | 0.8         | 67         |
| KC3     | 0.8                       | 1.0  | 0.2         | 25         |
| KC4     | 0.6                       | 0.5  | -0.1        | -17        |
| KD1     | 0.8                       | 1.0  | 0.2         | 25         |
| KD2     | 0.2                       | 3.0  | 2.8         | 1400       |
| KD3     | 0.6                       | 1.0  | 0.4         | 67         |
| KE1     | 1.0                       | 1.5  | 0.5         | 50         |
| KE2     | 0.3                       | 2.0  | 1.7         | 567        |
| KE3     | 0.5                       | 0.5  | 0.0         | 0          |

Table 6. Depth of the black layer recorded at the SCM transect stations in the 2003 baseline survey and in 2014. Red indicates values falling outside the SCM prescription limit for temporal change.

#### 4.4 Biotope composition

All biotopes in the revised list of baseline survey biotopes (Table 3) were present along the relocatable transects in 2014, apart from **LS.LBR.LMus.Myt.Sa** in transect zone KC3. The faunal composition of the community at KC3 was very similar in both years, but there was a temporal reduction in the characterising species, *Mytilus edulis*. The biotope was, however, recorded at three locations during the biotope mapping survey, one of which was only 80 m from KC3. The disappearance of the biotope here appears to have resulted from a localised reduction in *Mytilus* density and there is no reason to believe that this is not within the range of natural temporal variation.

#### 4.5 Distribution and spatial pattern of biotopes

The SAT prescription is that all biotopes recorded during the baseline survey will continue to be present along the same transects. Changes in the spatial pattern of biotopes along the relocatable transects are summarised in Table 7. For each of the three zonal records of change, the baseline survey biotope was not present at any point along the same transect in 2014. The disappearance of **LS.LSa.FiSa.Po** from the top of transect KA (KA1) is considered to be possibly due to changes in moisture content and stability of the sand resulting from natural variation in the hydrodynamic environment at this relatively exposed location (see section 3.1.1), whereas on the middle of the shore (KA2) the transition from **LS.LSa.FiSa.Po** to **LS.LSa.MuSa.Lan** results merely from the upward extension of the *Lanice conchilega* population from the adjacent zone (KA3). In fact, KA2 would have been referred to **LS.LSa.FiSa.Po** had *L. conchilega* been recorded as frequent rather than common. Similarly, as described in Section 3.1.3 above, the loss of **LS.LBR.LMus.Myt.Sa** from transect KC is likely to have resulted from natural temporal variation in the success of the *Mytilus edulis* population.

| Zone |                    | Survey                |
|------|--------------------|-----------------------|
| ZUNE | 2003               | 2014                  |
| KA1  | LS.LSa.FiSa.Po     | LS.LSa.MoSa.AmSco.Eur |
| KA2  | LS.LSa.FiSa.Po     | LS.LSa.MuSa.Lan       |
| KC3  | LS.LBR.LMus.Myt.Sa | LS.LSa.MuSa.HedMacEte |

Table 7. Recorded temporal changes in biotopes along the SCM transects.

In general there was little temporal change in the recorded distribution of biotopes along the transects. The perceived lower boundary of the uppermost zone (**LS.LMu.MEst.HedMacScr**) along transect KE extended farther downshore by around 30 m in 2014. However, the location of this boundary was not distinct and so temporal change cannot be confirmed.

#### 4.6 Presence or abundance of specified species

The SAT lists five indicator species with prescribed values for frequency of occurrence at the 16 SCM monitoring stations. These are also given in Table 8, together with occurrence values recorded in 2014.

| Species              | Frequency | % occurrence | Prescribed % occurrence |
|----------------------|-----------|--------------|-------------------------|
| Hediste diversicolor | 8         | 50           | 30                      |
| Arenicola marina     | 13        | 81           | 50                      |
| Corophium volutator  | 6         | 38           | 40                      |
| Scrobicularia plana  | 5         | 31           | 25                      |
| Cerastoderma edule   | 15        | 94           | 50                      |

Table 8. Frequency of occurrence of named positive indicator species at the 16 SCM transect stations in 2014.

All species lie well within the prescribed % occurrence target, apart from *Corophium volutator*, which falls narrowly below it. This species was absent at two stations along transect KE in 2014, where it was recorded in 2003. However, a closely related species, *Crassicorophium bonnellii*, was recorded at both stations in 2014 but was not found at any station during the baseline survey. It is unlikely that *C. bonnellii* has competitively replaced *C. volutator* along transect KE, as the two species occupy quite different niches, with *C. bonnellii* constructing tubes on stones and other firm substrates, whereas *C. volutator* lives in U-shaped burrows within the sediment. It is possible, however, that the corophiid material from these two stations in the 2003 samples was misidentified. If this were the case, and the two KE sites were excluded from consideration, then the frequency of *C. volutator* was recorded close to one of these stations (KE1) in the same biotope polygon at the head of Camas Clachach bay, during the biotope mapping survey. There is insufficient evidence to conclude that any of the five indicator species have undergone a reduction in the frequency of their occurrence.

#### 4.7 Species composition of representative biotopes

The SAT prescription is that there should be no decline in biotope quality due to a change in species composition or through loss of notable species. The only clear evidence of a deleterious change in species composition relates to the impoverishment of the community in the upper zone of transect KA (KA1), with a temporal reduction in the species complement from 12 to 4 (Table 2). However, this change, which resulted in ascription of a different biotope in 2014, is considered to probably result from natural variation in the hydrodynamic conditions at this relatively exposed location, as discussed previously. There was no overall change in mean taxon richness at all 16 transect stations ( $\overline{x} = 16$  for both survey years) and there were no overall significant temporal changes in richness for any of the transects (2-way ANOVA, p>0.05).

Transect KA also experienced a compositional change in the lowest zone (KA3), with the incursion by the invasive alga, *Sargassum muticum* (Figure 12). However, the current population density is very low and any impact on the character or condition of the biotope must be considered insignificant at the present time.



Figure 12. <u>Sargassum muticum</u>. Photographed within 20 m of station KE3 on 12/08/2014.

#### 4.8 Topography

Little temporal change in topography along the five transects was recorded. At the bottom of two of the transects, perceived height differences may have been due to natural temporal change in the course of the channel, or in its width due to the volume of contained water at the time of measurement. A loss of around 30 cm of sediment on the lower shore of transect KA is considered to reflect natural hydrodynamic variability at this relatively exposed location.

#### 4.9 Overall condition assessment

As a result of the 2014 site condition monitoring of the Kentra Bay and Moss SSSI it is concluded that the site should be assigned to the condition category "Favourable Maintained".

#### 4.10 Recommendations

Although aerial imagery of the Kentra sediment flats was available from both 2007 and 2013, the older material was largely used to aid biotope mapping as clarity was superior as a result of it being recorded close to the time of low water. Although contemporary imagery should preferably accompany biotope mapping, comparison of the imagery from both years suggests that employment of the older material probably had little influence on the resultant mapping, although some temporal change in channel routing is evident. Up-to-date, suitable imagery would, however, improve confidence in the accuracy of the resultant mapping. It would also permit some assessment of temporal change in the extent of the sediment flats.

All the major biotopes present on the mudflats (as revealed by the biotope mapping survey) were represented along the SCM transects and these transects also provided good geographical coverage of the sediment flats. It is therefore recommended that future monitoring should retain the current selection of transects.

Little temporal change in topography was recorded along the SCM transects and this might be expected in the case of relatively sheltered sediment flats. Temporal change which does occur will be generally due to natural variability in wave and current action. The importance of monitoring transect profiles lies chiefly in its potential for aiding understanding of any identified temporal change in other measures of the condition of the habitat, such as modification of species or biotope attributes. Consideration could be given to the omission of profiling from future routine monitoring of the Kentra Bay sediment flats, but with adoption where the likelihood of significant temporal change is high, based on known anthropogenic activities or distinct changes in visual appearance. With continued improvements in the affordability and simplicity of sub-decimetre, GPS-derived height measurement, the cost/benefit ratio of incorporating transect profiling in the monitoring programme is likely to greatly decrease.

With the collection of single infaunal samples at monitoring stations, analysis of temporal change in infaunal species diversity for entire monitoring transects can be addressed by means of two-way analysis of variance, and this approach has been followed in this report. The collection of replicate samples at selected stations was found to be of value in assessing the scale of variability between replicates, thereby placing recorded temporal change at non-replicated stations into context. It is therefore considered worthwhile continuing to incorporate a degree of replication within site condition monitoring.

Apart from two stations along the most exposed transect, recorded black layer depths spanned a narrow range of 0.2 - 3.0 cm in both survey years. Given the variability in black layer depth observed at individual sites during the broadscale mapping survey (section 4.3) and the temporal change recorded at some sites possibly resulting from natural variation in the development of algal mats and other natural factors, the usefulness of quantitative targets for black layer depth within site condition monitoring of Kentra Bay sediment flats is questionable. Due to the simplicity of its measurement, it should continue to be monitored but without the formal adoption of target criteria.

None of the anthropogenic impacts observed during the 2014 survey work appear to be causing significant damage to the sediment flats and therefore are not believed to warrant remedial action. The Arivegaig sediment craters continue to constitute a visual impact but recovery of the biological condition of the habitat appears to have largely taken place. The process of natural accretion within the craters should be left to continue.

#### 5. REFERENCES

Ankar, S. & Jansson, B.O. 1973. Effects of an unusual natural temperature increase on a Baltic soft-bottom community. *Marine Biology* **18**; 9-18.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B. 2004. *The National Marine Habitat Classification for Britain and Ireland. Version 04.05.* Peterborough: Joint Nature Conservation Committee. ISBN: 1 861 07561 8 (internet version). Available from <<u>http://jncc.defra.gov.uk/page-1584</u>>

Gray, J.S. 1981. *The Ecology of Marine Sediments.* Cambridge University Press: Cambridge.

Hiscock, K. 1996. *Marine Nature Conservation Review: rationale and methods*. Peterborough: Joint Nature Conservation Committee. [Coasts and seas of the United Kingdom. MNCR series].

JNCC. 1998. A Statement on Common Standards Monitoring. Available from <<u>http://jncc.defra.gov.uk/page-2198</u>>

JNCC. 2004. Common Standards Monitoring Guidance for Littoral Sediment Habitats. Version August 2004. Available from <<u>http://jncc.defra.gov.uk/PDF/CSM\_marine\_littoral\_sediment.pdf</u>> Lyndon, A.R., Moore, C.G., Mair, J.M. & Edwards, D.C.B. 2004. Site condition monitoring survey of intertidal mud and sandflats in Kentra Bay, Lochaber, August 2003. *Scottish Natural Heritage Commissioned Report No. 074.* Available from <<u>http://www.snh.org.uk/pdfs/publications/commissioned reports/CommissionedReportNo07</u> 4.pdf>

Powell, H.T., Holme, N.A., Knight, S.J.T., Harvey, R., Bishop, G., & Bartrop, J. 1980. Survey of the littoral zone of the coast of Great Britain: 6. Report on the shores of north-west Scotland. (Contractor: Scottish Marine Biological Association/Marine Biological Association, Intertidal Survey Unit, Oban.). *Nature Conservancy Council, CSD Report, No. 289.* 

SNH. 2010. *Condition of designated sites*. Available from <<u>http://www.snh.gov.uk/docs/B686627.pdf</u>>

SNH. 2014. *Priority Marine Features in Scotland's seas*. [online] Available from <<u>http://www.snh.gov.uk/protecting-scotlands-nature/safeguarding-biodiversity/prioritymarine-features/priority-marine-features/></u>

Sundback, K. & McGlathery, K. 2005. Interactions between benthic macroalgal and microalgal mats. *Coastal and Estuarine Studies* **60**, 7–29.

#### ANNEX 1: SITE CONDITION MONITORING DATA

Table 1.1. Transect profile, positional and habitat data

| Feature                               | Distance<br>from<br>marker (m) | Height<br>above CD<br>(m) | Latitude | Longitude | Substrate                                                           | Moisture            | Depth<br>black<br>layer (cm) | Biotope                   |
|---------------------------------------|--------------------------------|---------------------------|----------|-----------|---------------------------------------------------------------------|---------------------|------------------------------|---------------------------|
| TRANSECT KA (12 Augu                  | st 2014)                       |                           |          |           |                                                                     |                     |                              |                           |
| transect marker                       | 0                              | 5.525                     | 56.75994 | -5.86991  |                                                                     |                     |                              |                           |
| rock/sand boundary                    | 8                              | 2.32                      | 56.76002 | -5.87009  |                                                                     |                     |                              |                           |
| station KA1                           | 27                             | 2.105                     | 56.76009 | -5.87027  | rippled medium sand                                                 | dry                 | 48                           | LS.LSa.MoSa.AmSco.<br>Eur |
| KA1/KA2 zone boundary                 | 38                             | 1.925                     | 56.76015 | -5.87040  |                                                                     |                     |                              |                           |
| KA1/KA2 zone boundary (2003 position) | 78                             | 1.96                      | 56.76035 | -5.87095  |                                                                     |                     |                              |                           |
| station KA2                           | 110                            | 1.67                      | 56.76051 | -5.87138  | rippled medium sand with maerl gravel and occasional bivalve shells | moist               | 19                           | LS.LSa.MuSa.Lan           |
| KA2/KA3 zone boundary                 | 166                            | 1.035                     | 56.76080 | -5.87213  |                                                                     |                     |                              |                           |
| station KA3                           | 201                            | 0.395                     | 56.76098 | -5.87261  | slightly muddy, rippled medium sand with maerl gravel               | standing<br>water   | 1                            | LS.LSa.MuSa.Lan           |
| channel                               | 220                            | 0.2                       | 56.76110 | -5.87283  |                                                                     |                     |                              |                           |
| TRANSECT KB (9 Augus                  | t 2014)                        |                           |          |           |                                                                     |                     |                              |                           |
| transect marker                       | 0                              | 4.54                      | 56.75831 | -5.85286  |                                                                     |                     |                              |                           |
| lower saltmarsh edge                  | 10                             | 3.58                      | 56.75818 | -5.85298  |                                                                     |                     |                              |                           |
| station KB1                           | 178                            | 3.23                      | 56.75690 | -5.85421  | muddy fine sand, occasional dead shells                             | standing<br>water   | 0.5                          | LS.LSa.MuSa.MacAre        |
| KB1/KB2 zone boundary (2003 position) | 325                            | 3.345                     | 56.75575 | -5.85539  |                                                                     |                     |                              |                           |
| KB1/KB2 zone boundary                 | 355                            | 3.315                     | 56.75553 | -5.85560  |                                                                     |                     |                              |                           |
| station KB2                           | 387                            | 3.24                      | 56.75525 | -5.85586  | medium sand with occasional dead shells                             | damp,<br>some pools | 2                            | LS.LSa.MuSa.MacAre        |
| KB2/KB3 zone boundary                 | 516                            | 2.695                     | 56.75425 | -5.85690  |                                                                     |                     |                              |                           |
| station KB3                           | 683                            | 2.405                     | 56.75294 | -5.85820  | medium sand with some rippling and rare dead shells - cockle, razor | damp                | 2                            | LS.LSa.FiSa.Po            |
| channel                               | 799                            | 1.425                     | 56.75204 | -5.85912  |                                                                     |                     |                              |                           |

#### Table 1.1 continued

| Feature                               | Distance | Height   | Latitude | Longitude | Substrate                                                                       | Moisture                    | Depth    | Biotope               |
|---------------------------------------|----------|----------|----------|-----------|---------------------------------------------------------------------------------|-----------------------------|----------|-----------------------|
|                                       | from     | above CD |          |           |                                                                                 |                             | black    |                       |
|                                       | (m)      | (11)     |          |           |                                                                                 |                             | (cm)     |                       |
| TRANSECT KC (11 August 2              | 014)     |          |          |           |                                                                                 | ı                           | <u> </u> |                       |
| transect marker                       | 0        | 4.91     | 56.75194 | -5.84927  |                                                                                 |                             |          |                       |
| lower margin of pebble zone           | 18       | 3.07     | 56.75182 | -5.84943  |                                                                                 |                             |          |                       |
| station KC1                           | 104      | 2.66     | 56.75118 | -5.85019  | slightly muddy partially rippled<br>medium sand with occ. dead<br>shells        | standing<br>water           | 1.5      | LS.LSa.MuSa.MacAre    |
| KC1/KC2 zone boundary                 | 184      | 2.68     | 56.75058 | -5.85092  |                                                                                 |                             |          |                       |
| station KC2                           | 225      | 2.41     | 56.75026 | -5.85132  | gravel and dead shells on<br>medium sand                                        | dry                         | 2        | LS.LSa.MuSa.HedMacEte |
| upper edge muddy sand<br>patch        | 239      | 2.25     | 56.75017 | -5.85145  |                                                                                 |                             |          |                       |
| lower edge muddy sand<br>patch        | 287      | 2.09     | 56.74981 | -5.85186  |                                                                                 |                             |          |                       |
| station KC3                           | 309.5    | 2.295    | 56.74964 | -5.85207  | gravel on clean medium sand with dead shells and stones                         | dry                         | 1        | LS.LSa.MuSa.HedMacEte |
| KC3/KC4 zone boundary (2003 position) | 325      | 2.17     | 56.74952 | -5.85220  |                                                                                 |                             |          |                       |
| KC3/KC4 zone boundary                 | 330      | 2.16     | 56.74947 | -5.85226  |                                                                                 |                             |          |                       |
| station KC4                           | 361      | 1.71     | 56.74924 | -5.85254  | slightly muddy sand, a few<br>dead shells, some patches of<br>gravel on surface | waterlogged;<br>dry surface | 0.5      | LS.LSa.MuSa.MacAre    |
| channel                               | 397      | 1.445    | 56.74899 | -5.85284  |                                                                                 |                             |          |                       |
| TRANSECT KD (8 August 20              | 14)      |          |          | -         | -                                                                               |                             | -        |                       |
| transect marker                       | 0        | 3.965    | 56.74289 | -5.84926  |                                                                                 |                             |          |                       |
| lower saltmarsh edge                  | 6.5      | 3.245    | 56.74295 | -5.84927  |                                                                                 |                             |          |                       |
| station KD1                           | 32.5     | 3.165    | 56.74318 | -5.84931  | gravelly muddy sand, occ. cobbles                                               | standing<br>water (rain?)   | 1        | LS.LMu.MEst.HedMac    |
| KD1/KD2 zone boundary (2003 position) | 51       | 3.055    | 56.74334 | -5.84933  |                                                                                 |                             |          |                       |

#### Table 1.1 continued

| Feature                               | Distance | Height   | Latitude | Longitude | Substrate                                      | Moisture                  | Depth        | Biotope               |
|---------------------------------------|----------|----------|----------|-----------|------------------------------------------------|---------------------------|--------------|-----------------------|
|                                       | Trom     | above CD |          |           |                                                |                           | DIACK        |                       |
|                                       | (m)      | (11)     |          |           |                                                |                           | (cm)         |                       |
| KD1/KD2 zone boundary                 | 53.5     | 3.015    | 56.74337 | -5.84933  |                                                |                           | (011)        |                       |
| station KD2                           | 82       | 2.885    | 56.74361 | -5.84938  | muddy sand with some gravel; scattered cobbles | standing<br>water (rain?) | 3            | LS.LMu.MEst.HedMacScr |
| KD2/KD3 zone boundary (2003 position) | 105      | 2.815    | 56.74381 | -5.84941  |                                                |                           |              |                       |
| KD2/KD3 zone boundary                 | 120      | 2.615    | 56.74397 | -5.84943  |                                                |                           |              |                       |
| station KD3                           | 124      | 2.585    | 56.74400 | -5.84944  | slightly muddy sand                            | standing<br>water         | 1            | LS.LMu.MEst.HedMacScr |
| channel                               | 161      | 2.055    | 56.74431 | -5.84948  |                                                |                           |              |                       |
| TRANSECT KE (10August 20              | 014)     |          |          |           |                                                |                           |              |                       |
| transect marker                       | 0        | 4.45     | 56.74479 | -5.87445  |                                                |                           |              |                       |
| lower saltmarsh edge                  | 10       | 3.505    | 56.74483 | -5.87435  |                                                |                           |              |                       |
| station KE1                           | 32       | 3.08     | 56.74500 | -5.87415  | medium muddy sand                              | standing<br>water (rain?) | 1.5 -<br>2.0 | LS.LMu.MEst.HedMacScr |
| KE1/KE2 zone boundary (2003 position) | 55       | 3.035    | 56.74517 | -5.87389  |                                                |                           |              |                       |
| KE1/KE2 zone boundary                 | 86       | 3.02     | 56.74538 | -5.87355  |                                                |                           |              |                       |
| station KE2                           | 105      | 2.895    | 56.74551 | -5.87335  | medium sand, clean                             | standing<br>water         | 2            | LS.LSa.MuSa.MacAre    |
| KE2/KE3 zone boundary                 | 259      | 2.525    | 56.74658 | -5.87174  |                                                |                           |              |                       |
| station KE3                           | 447      | 2.235    | 56.74787 | -5.86976  | medium sand                                    | standing<br>water         | 0.5          | LS.LSa.MuSa.MacAre    |
| channel                               | 780      | 0.16     | 56.75014 | -5.86619  |                                                |                           |              |                       |

Table 1.2. Particle size analysis of sediments at stations along five intertidal transects (KA - KE) in 2014, showing percentage of total sediment sample collected by sieves at 0.5 phi interval mesh sizes.

| Sieve<br>(phi) | Station |       |       |       |       |       |       |       |       |       |
|----------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | KA1     | KA2   | KA3   | KB1   | KB2   | KB3   | KC1   | KC2   | KC3   | KC4   |
| -3.50          | 0.00    | 0.00  | 3.16  | 0.00  | 0.00  | 0.00  | 0.94  | 4.15  | 4.35  | 1.15  |
| -3.00          | 0.00    | 0.21  | 1.16  | 0.00  | 0.00  | 0.00  | 1.05  | 14.75 | 0.68  | 2.06  |
| -2.50          | 0.00    | 0.14  | 2.40  | 0.00  | 0.00  | 0.00  | 1.04  | 4.45  | 2.73  | 1.12  |
| -2.00          | 0.00    | 0.94  | 2.67  | 0.00  | 0.06  | 0.07  | 0.95  | 1.77  | 4.99  | 0.58  |
| -1.50          | 0.10    | 2.24  | 6.23  | 0.04  | 0.05  | 0.00  | 2.22  | 2.65  | 5.23  | 0.57  |
| -1.00          | 0.19    | 2.73  | 8.63  | 0.01  | 0.08  | 0.00  | 3.54  | 3.44  | 5.06  | 0.47  |
| -0.50          | 0.28    | 3.40  | 8.12  | 0.10  | 0.12  | 0.08  | 6.38  | 3.89  | 6.24  | 0.63  |
| 0.00           | 0.59    | 2.71  | 4.11  | 0.32  | 0.35  | 0.30  | 7.24  | 3.49  | 4.89  | 1.01  |
| 0.50           | 1.73    | 3.77  | 3.79  | 1.07  | 3.45  | 1.70  | 7.25  | 3.84  | 5.02  | 2.34  |
| 1.00           | 6.49    | 7.50  | 5.88  | 3.61  | 14.57 | 5.98  | 8.72  | 5.53  | 6.87  | 5.28  |
| 1.50           | 18.85   | 22.04 | 9.54  | 6.85  | 28.52 | 17.54 | 11.79 | 7.21  | 7.59  | 8.00  |
| 2.00           | 49.06   | 34.51 | 22.54 | 16.90 | 28.61 | 30.98 | 23.07 | 13.70 | 13.79 | 18.82 |
| 2.50           | 17.06   | 14.65 | 13.72 | 18.48 | 13.14 | 29.37 | 15.94 | 12.25 | 14.51 | 21.99 |
| 3.00           | 3.37    | 3.22  | 5.06  | 30.62 | 4.99  | 10.65 | 7.14  | 10.00 | 12.53 | 22.07 |
| 3.50           | 0.65    | 0.50  | 0.88  | 14.53 | 2.83  | 1.84  | 1.14  | 3.34  | 3.19  | 7.02  |
| 4.00           | 0.15    | 0.14  | 0.27  | 3.94  | 1.52  | 0.45  | 0.28  | 1.35  | 0.92  | 2.83  |
| >4             | 1.48    | 1.30  | 1.84  | 3.53  | 1.72  | 1.04  | 1.31  | 4.19  | 1.41  | 4.05  |

| Sieve<br>(phi) | Station |       |       |       |       |       |  |  |  |  |
|----------------|---------|-------|-------|-------|-------|-------|--|--|--|--|
|                | KD1     | KD2   | KD3   | KE1   | KE2   | KE3   |  |  |  |  |
| -3.50          | 0.00    | 0.00  | 0.00  | 3.06  | 0.00  | 0.00  |  |  |  |  |
| -3.00          | 1.80    | 0.99  | 2.12  | 0.00  | 0.00  | 0.00  |  |  |  |  |
| -2.50          | 0.00    | 0.79  | 0.19  | 1.23  | 0.00  | 0.00  |  |  |  |  |
| -2.00          | 0.88    | 0.52  | 0.27  | 0.18  | 0.33  | 0.04  |  |  |  |  |
| -1.50          | 1.49    | 1.70  | 0.36  | 1.12  | 0.13  | 0.05  |  |  |  |  |
| -1.00          | 1.87    | 1.66  | 0.57  | 0.81  | 0.10  | 0.06  |  |  |  |  |
| -0.50          | 1.56    | 2.13  | 0.50  | 0.83  | 0.34  | 0.17  |  |  |  |  |
| 0.00           | 1.55    | 2.94  | 1.53  | 0.91  | 0.54  | 0.12  |  |  |  |  |
| 0.50           | 2.37    | 4.85  | 5.02  | 1.31  | 2.30  | 0.28  |  |  |  |  |
| 1.00           | 3.89    | 6.32  | 12.03 | 2.58  | 6.88  | 0.31  |  |  |  |  |
| 1.50           | 4.97    | 8.20  | 13.40 | 3.55  | 15.23 | 1.34  |  |  |  |  |
| 2.00           | 11.45   | 9.97  | 17.59 | 9.68  | 21.31 | 4.19  |  |  |  |  |
| 2.50           | 9.74    | 8.82  | 12.10 | 13.13 | 22.92 | 12.77 |  |  |  |  |
| 3.00           | 8.16    | 4.36  | 13.61 | 20.35 | 17.59 | 33.22 |  |  |  |  |
| 3.50           | 2.51    | 1.70  | 10.11 | 6.71  | 6.04  | 25.43 |  |  |  |  |
| 4.00           | 1.40    | 1.35  | 5.34  | 2.15  | 2.53  | 14.37 |  |  |  |  |
| >4             | 46.37   | 43.71 | 5.27  | 32.41 | 3.75  | 7.65  |  |  |  |  |

Table 1.3. Particle size characteristics of sediments at stations along five intertidal transects (KA - KE) in 2014.  $MD_{\emptyset}$  = median grain diameter in phi units,  $MD_{\mu}$  = median grain diameter in microns,  $QD_{\emptyset}$  = phi quartile deviation. Also shown are temporal changes in the percentage values of silt/clay, sand and gravel between the 2003 baseline survey and 2014.

| Station |      |                 |      | Temporal change (%) |        |          |           |        |        |
|---------|------|-----------------|------|---------------------|--------|----------|-----------|--------|--------|
|         | MDø  | MD <sub>µ</sub> | QDø  | % silt/clay         | % sand | % gravel | silt/clay | sand   | gravel |
| KA1     | 1.75 | 297             | 0.25 | 1.48                | 98.52  | 0.00     | -0.04     | 0.22   | -0.20  |
| KA2     | 1.55 | 342             | 0.48 | 1.30                | 97.41  | 1.29     | -0.29     | 4.91   | -4.61  |
| KA3     | 1.20 | 435             | 1.45 | 1.84                | 88.77  | 9.39     | -0.24     | -1.43  | 1.69   |
| KB1     | 2.55 | 171             | 0.53 | 3.53                | 96.47  | 0.00     | 1.03      | 3.47   | -4.50  |
| KB2     | 1.55 | 342             | 0.45 | 1.72                | 98.22  | 0.06     | 0.32      | 0.42   | -0.74  |
| KB3     | 1.90 | 268             | 0.40 | 1.04                | 98.89  | 0.07     | -0.27     | 0.19   | 0.07   |
| KC1     | 1.15 | 451             | 1.28 | 1.31                | 94.71  | 3.99     | 0.13      | 7.31   | -7.41  |
| KC2     | 1.13 | 457             | 2.15 | 4.19                | 70.68  | 25.12    | 2.69      | -3.42  | 0.72   |
| KC3     | 1.25 | 420             | 1.55 | 1.41                | 85.84  | 12.75    | -0.34     | -5.46  | 5.75   |
| KC4     | 2.19 | 219             | 0.60 | 4.05                | 91.04  | 4.91     | 1.74      | 21.74  | -23.49 |
| KD1     | 3.00 | 125             | ND   | 46.37               | 50.95  | 2.68     | 6.74      | -6.65  | -0.02  |
| KD2     | 2.60 | 165             | ND   | 43.71               | 53.99  | 2.29     | 22.58     | -23.21 | 0.59   |
| KD3     | 1.90 | 268             | 0.88 | 5.27                | 92.15  | 2.58     | -1.05     | 1.65   | -0.62  |
| KE1     | 2.80 | 144             | ND   | 32.41               | 63.12  | 4.47     | -1.17     | 0.22   | 0.97   |
| KE2     | 2.05 | 241             | 0.58 | 3.75                | 95.91  | 0.33     | 1.51      | 0.41   | -1.97  |
| KE3     | 2.95 | 129             | 0.43 | 7.65                | 92.31  | 0.04     | 0.02      | 1.41   | -1.36  |
Table 1.4. Abundance of infauna at stations along five intertidal transects (KA - KE). Abundance given is the number in samples of 8 pooled cores of total area 0.0667  $m^2$ . Four replicate samples were taken at one station along each transect, and single samples elsewhere. P = present.

|                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     | S   | amp | le  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Taxon                            |     |     | K   | A   |     |     |     |     | K   | В   |     |     |     |     |     | KC  |     |     |     |     |     | K   | D   |     |     |     |     | K   | E   |     |     |
|                                  | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 4.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 |
| Nemertea spp                     |     | 2   |     | 5   | 4   | 2   |     |     |     |     |     | 1   |     |     |     |     | 5   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <i>Lineus</i> sp                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     |     |
| Harmothoe sp juv                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     | 1   |     |     |     |     |
| Phyllodocidae sp<br>indet        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |
| Eteone longa                     |     |     |     |     |     |     |     |     |     |     |     |     |     | 5   | 1   | 2   | 3   |     |     |     |     | 1   |     | 1   |     | 2   |     |     |     | 1   | 1   |
| Phyllodoce<br>mucosa             |     | 1   | 1   |     | 1   | 2   |     |     |     |     | 1   |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |
| Kefersteinia<br>cirrata          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     | 1   |     |     | 2   | 1   | 2   | 1   |     |     | 1   | 1   |
| Syllis sp E                      |     |     | 5   | 5   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     |
| Streptosyllis<br>websteri        |     | 1   | 1   | 1   | 1   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Parexogone<br>hebes              |     |     |     | 1   |     | 4   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Exogone<br>(Exogone)<br>verugera |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nereididae sp juv                |     |     |     |     |     | 2   |     |     | 1   |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hediste<br>diversicolor          |     | 1   |     |     |     |     |     |     |     |     |     |     |     | 8   | 6   | 4   | 8   | 2   |     | 22  | 23  | 20  | 13  | 5   | 6   | 31  | 10  | 43  | 20  | 4   |     |
| Nephtys cirrosa                  |     | 7   | 5   | 2   | 1   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nephtys<br>hombergii             |     |     |     |     |     | 1   | 1   |     | 2   | 5   | 1   | 2   |     |     |     |     |     | 2   | 5   |     |     |     |     |     |     |     |     |     |     |     | 6   |
| Protodorvillea<br>kefersteini    |     |     |     | 1   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Schistomeringos<br>neglecta      |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|                                        |     |     |     |     |     |     |     |     |     |     |     |     |     |     | S   | amp | е   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Taxon                                  |     |     | K   | A   |     |     |     |     | K   | В   |     |     |     |     |     | KC  |     |     |     |     |     | K   | D   |     |     |     |     | K   | E   |     |     |
|                                        | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 4.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 |
| Leitoscoloplos<br>mammosus             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |
| Scoloplos<br>(Scoloplos)<br>armiger    |     | 1   |     | 1   | 2   | 12  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Aricidea (Aricidea)<br>minuta          |     | 1   |     |     |     | 4   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spionidae sp<br>juv/indet              |     |     |     | 1   | 3   | 1   |     |     |     |     |     |     |     |     |     |     |     |     | 2   |     |     |     |     |     |     |     |     |     |     |     |     |
| Aonides<br>oxycephala                  |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Malacoceros<br>tetracerus              |     |     |     |     |     |     |     |     |     |     |     |     |     | 16  |     | 1   | 18  | 2   |     |     |     |     |     |     | 2   |     |     |     |     | 4   |     |
| Polydora cornuta                       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |
| Pseudopolydora<br>pulchra              |     | 2   | 2   |     |     | 5   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |
| Pygospio elegans                       |     | 6   | 10  | 30  | 10  | 1   | 5   | 25  | 7   | 8   | 4   |     | 2   | 85  | 10  | 20  | 71  | 154 | 6   |     |     |     |     | 1   | 20  |     | 2   |     | 4   | 33  | 29  |
| Scolelepis<br>(Scolelepis)<br>foliosa  |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Scolelepis<br>(Scolelepis)<br>squamata | 1   |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spio martinensis                       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |
| Chaetozone<br>christiei                |     | 5   |     |     | 1   | 11  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Cirriformia<br>tentaculata             |     |     | 2   |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Flabelligera affinis                   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |

|                     | Sample |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
|---------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| Taxon               |        |     | K   | Α   |     |     |     |     | K   | В   |     |     |     |     |     | KC  |     |     |     |     |          | K   | D   |     |     |     |     | K   | E   |     |                |
|                     | 1.1    | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 4.1 | 1.1 | 1.2      | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1            |
| Capitella capitata  |        |     |     |     |     | 4   |     | 1   |     |     | 3   |     |     | 1   | 1   |     | 1   | 6   |     |     |          |     |     |     | 4   |     |     |     |     | 1   |                |
| Mediomastus         |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| fragilis            |        | 3   | 1   | 3   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Notomastus          |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| latericeus          |        | 2   | 4   | 3   | 4   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Arenicola marina    |        |     |     |     |     |     |     | 1   |     |     |     | 1   | 2   | 4   |     | 5   | 3   | 1   |     |     |          |     |     |     |     |     |     | 2   |     |     |                |
| Leiochone           | 4      | F   | 6   | 6   | 6   | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| leiopygos           | I      | 5   | 0   | 0   | 0   | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Euclymene           |        |     |     |     |     | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| oerstedi            |        |     |     |     |     | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Travisia forbesii   |        | 3   | 6   | 21  | 3   |     |     |     |     |     |     | 12  |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Polyophthalmus      |        |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| pictus              |        |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Amphitrite cirrata  |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |          |     |     |     |     |     |     |     |     |     | 1              |
| Polycirrus medusa   |        |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Fabricia stellaris  |        |     |     |     |     |     | 4   | 15  | 3   | 3   | 27  |     | 1   |     |     |     | 11  |     |     |     |          |     |     |     |     |     |     |     |     | 3   | 1              |
| Spirobranchus       |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| lamarcki            |        |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Paranais litoralis  |        |     |     |     |     |     |     | 3   |     |     |     |     |     |     |     | 1   |     |     |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Clitellio arenarius |        |     |     |     |     |     |     |     |     |     |     |     |     | 22  | 19  | 17  | 30  | 39  |     |     |          |     |     |     |     |     |     |     |     |     |                |
| Baltidrilus         |        |     |     |     |     |     |     |     |     |     |     |     |     | 20  | -   | _   | ~~  | 4   |     |     |          |     |     | 4   |     |     | -   | ~   | 4   | 7   |                |
| costatus            |        |     |     |     |     |     |     |     |     |     |     |     |     | 39  | 1   | 8   | 22  | 1   |     |     |          |     |     | T   |     | 1   | 5   | 2   | 1   | 1   | ł              |
| Tubificoides        |        |     |     |     |     |     | Λ   | Q   | 15  | 10  | 11  |     |     | 1   |     | 2   | 1   | 1   | 2   | 2   | Q        | 5   | 1   | 31  | 10  | 28  | 20  | 38  | 78  | 113 | 2              |
| benedii             |        |     |     |     |     |     | -   | 0   | 15  | 10  | 44  |     |     | 1   |     | 2   | -   | -   | 2   | 2   | 0        | 5   | '   | 51  | 49  | 20  | 29  | 50  | 70  | 115 | 2              |
| Tubificoides        |        |     |     |     |     | 1   |     |     |     |     |     |     | 1   | 10  | 2   | 2   | 6   | 1/  | 1   |     | 1        |     |     |     | Q   |     |     |     | 1   | 2   | ł              |
| pseudogaster agg.   |        |     |     |     |     |     |     |     |     |     |     |     | 1   | 19  | 2   | 2   | 0   | 14  | '   |     | <b>'</b> |     |     |     | 0   |     |     |     | 1   | 2   | ł              |
| Enchytraeidae spp   | )      |     |     | 2   |     |     |     |     |     |     |     |     |     | 55  | 9   | 20  | 49  | 118 |     |     |          |     |     |     |     |     |     |     |     |     |                |
| <i>Grania</i> spp   |        | 1   | 1   | 2   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     | 1              |
| Semibalanus         |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     | 1              |
| balanoides          |        |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     |          |     |     |     |     |     |     |     |     |     | 1 <sup> </sup> |

|                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     | S   | ampl | е   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Taxon                          |     |     | K   | A   |     |     |     |     | K   | В   |     |     |     |     |     | KC   |     |     |     |     |     | K   | כ   |     |     |     |     | Κ   | ε   |     |     |
|                                | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 2.1 | 2.2 | 2.3  | 2.4 | 3.1 | 4.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 |
| Austrominius<br>modestus       |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Neomysis integer               |     |     |     |     |     |     | 2   | 2   | 2   |     | 1   |     | 3   | 3   |     | 2    |     |     | 15  |     |     |     |     |     |     |     |     |     |     |     |     |
| Praunus sp                     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Apherusa<br>bispinosa          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     | 1   |     |     |     |     |     |     |
| Tryphosella sarsi              |     |     | _   |     |     |     |     |     |     |     |     |     |     |     |     |      | _   |     |     |     |     |     |     |     |     | 2   |     |     |     |     |     |
| Bathyporeia<br>guilliamsoniana |     | 2   |     |     | 1   |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Bathyporeia pilosa             |     |     |     |     |     |     |     |     |     |     |     | 3   |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Melitidae sp indet             |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     | 1   | ſ    |     | [   |     |     | ſ   |     |     |     |     |     | ſ   |     |     |     |     |
| Melita palmata                 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |     |
| Microprotopus<br>maculatus     |     |     |     |     |     | 3   |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Crassicorophium<br>bonellii    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |     | 1   |     |     |     |     |     |     | 1   | 8   |     | 1   |     | 1   |     |
| Crassicorophium<br>crassicorne |     | 3   | 5   | 10  | 4   |     |     |     |     |     |     |     |     | 1   |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Corophium<br>volutator         |     |     |     |     |     |     |     |     |     |     | 1   |     |     | 4   |     | 2    | 2   | 6   |     | 2   |     |     | 1   | 3   | 11  |     |     |     |     |     |     |
| Eurydice pulchra               | 1   |     |     | 2   |     |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Eualus pusiolus?               |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     | 1   |     |     |     |     |     |     |     |     |
| Crangon crangon                |     |     | 1   |     |     |     | 1   |     |     | 2   | 1   | 2   | 1   | 1   |     |      |     | 1   |     |     |     |     |     | 4   | 2   |     |     |     |     | 1   | 1   |
| Pagurus<br>bernhardus          |     |     |     |     |     | 1   |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Carcinus maenas                |     |     | 1   |     | 1   |     |     |     |     |     | 1   |     |     |     |     |      |     |     |     |     |     | 1   | 1   |     |     |     |     |     |     |     |     |
| Chironomidae spp               |     |     | 1   | 2   | 2   |     |     | 1   |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     | i   |     |     |

|                                             | Sample |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Taxon                                       |        |     | K   | A   |     |     |     |     | K   | В   |     |     |     |     |     | KĊ  |     |     |     |     |     | K   | כ   |     |     |     |     | K   | E   |     |     |
|                                             | 1.1    | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 4.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 3.1 |
| Lepidochitona<br>(Lepidochitona)<br>cinerea |        | 1   | 1   |     |     | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <i>Littorina</i> spp juv                    |        |     |     |     |     |     |     |     |     |     | 2   |     |     |     | 1   |     |     |     |     |     |     |     | 1   | 2   |     |     |     |     |     |     |     |
| Peringia ulvae                              |        |     |     |     |     |     | 29  | 20  | 12  | 55  | 359 |     | 1   | 1   |     |     | 1   |     |     | 40  | 53  | 38  | 96  | 22  | 2   | 188 | 178 | 233 | 224 | 149 | 2   |
| Retusa obtusa                               |        | 5   |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Lucinoma borealis                           |        | 7   | 4   | 2   | 3   | 4   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Kurtiella bidentata                         |        | 1   | 1   | 5   | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Cerastoderma<br>edule (juvs)                | 4      | 20  | 9   | 34  | 13  | 5   | 34  | 23  | 40  | 44  | 31  |     | 37  | 15  | 10  | 17  | 26  | 10  | 2   |     |     | 1   |     | 1   | 5   | 1   |     |     | 1   | 8   | 11  |
| <i>Cerastoderma<br/>edule</i> (adults)      |        | 1   |     |     |     |     | 7   | 1   | 6   | 6   | 1   | 1   |     | 2   | 1   | 1   |     | 1   |     |     |     |     |     | 1   |     |     |     |     |     |     |     |
| Tellina tenuis                              |        | 4   | 5   | 2   | 3   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Macoma balthica                             |        |     |     |     |     |     | 2   | 2   | 1   | 1   | 2   |     |     |     |     |     |     |     |     | 2   |     |     | 1   | 3   |     |     | 2   | 2   | 1   | 5   | 2   |
| Scrobicularia<br>plana                      |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     | 3   | 6   | 1   | 6   | 3   | 1   | 1   |     |
| <i>Dosinia</i> spp juv                      |        |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Polititapes<br>rhomboides                   |        | 6   | 1   | 1   | 4   | 16  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Thracia<br>phaseolina                       |        |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Phoronis spp                                |        | 2   | 1   |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Antedon bifida                              |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |     |     |     |
| Unidentified sp.                            |        |     |     | 1   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Arionidae spp<br>(terrestrial slugs)        |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   | 1   |     |     |     |     |     |     |
| Araneae spp<br>(terrestrial<br>spiders)     |        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | Р   |     |     |     |     |     |     |     |     |     |     |     |

Table 1.5. Abundance of biota at stations along 5 transects (KA - KE). SACFOR abundances are given derived from visual observation of biota when digging over a total area of sediment of c.  $1 m^2$  or by estimating the abundance of Arenicola casts and Lanice tubes.

| Таха                   |     |     |     |     |     |     |     | Si  | ite |     |     |     |     |     |     |     |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                        | KA1 | KA2 | KA3 | KB1 | KB2 | KB3 | KC1 | KC2 | KC3 | KC4 | KD1 | KD2 | KD3 | KE1 | KE2 | KE3 |
| Phyllodoce sp.         |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <i>Glycera</i> sp.     |     | F   | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Alitta virens          |     |     | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hediste diversicolor   |     |     |     |     |     |     |     |     |     |     | С   | F   |     | F   |     |     |
| Nereidae sp.           |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | F   |
| Nephtys cirrosa        |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nephtys hombergii      |     |     |     | F   | F   |     | F   | F   |     | F   |     |     | F   |     | F   | F   |
| <i>Nephtys</i> sp.     |     |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Arenicola marina       |     |     | С   | Α   | Α   | Α   | Α   | С   | С   | Α   |     | С   | Α   | Α   | Α   | Α   |
| Maldanidae spp.        |     | Р   | Р   |     |     |     |     |     |     |     |     |     |     |     |     | F   |
| Lanice conchilega      |     | С   | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Tubificidae spp.       |     | 0   |     |     |     |     |     |     | 0   | Р   |     |     |     |     |     |     |
| Semibalanus balanoides |     |     |     | R   |     |     |     |     | Р   |     |     |     |     | Р   |     |     |
| Elminius modestus      |     |     |     | R   |     |     |     |     | Р   |     |     |     |     | Р   |     |     |
| Mysidacea sp.          |     |     |     | Р   | Р   |     |     |     |     |     |     |     |     |     |     |     |
| Crangon crangon        |     |     | F   |     |     |     | F   |     |     |     |     |     |     |     |     |     |
| Carcinus maenas        |     | С   |     | С   |     | С   |     |     | С   | С   |     |     | С   | С   |     |     |
| Littorina littorea     |     |     |     |     |     |     |     |     | С   |     |     |     |     |     |     |     |
| Cerastoderma edule     |     |     |     | С   |     | F   | F   | F   | F   |     |     |     |     |     |     |     |
| Scrobicularia plana    |     |     |     |     |     |     |     |     |     |     |     | С   | F   | С   | F   |     |
| <i>Mya</i> sp.         |     |     |     |     |     |     |     |     |     |     |     |     | F   |     |     |     |
| Angulus tenuis         |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Mytilus edulis         |     |     |     |     |     |     |     |     | 0   |     |     |     |     |     |     |     |
| Venerupis corrugata    |     |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ensis ensis            |     |     | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Fucus vesiculosus      |     | R   |     | R   |     |     |     | R   | R   |     | Р   | Р   |     |     | R   |     |
| Fucus spiralis         |     |     |     |     |     |     |     |     |     |     |     |     |     | R   |     |     |

| Таха                  |     |     |     |     |     |     |     | Si  | te  |     |     |     |     |     |     |     |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                       | KA1 | KA2 | KA3 | KB1 | KB2 | KB3 | KC1 | KC2 | KC3 | KC4 | KD1 | KD2 | KD3 | KE1 | KE2 | KE3 |
| Pelvetia canaliculata |     |     |     |     |     |     |     |     |     |     |     |     |     | R   |     |     |
| Chorda filum          |     |     | R   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Sargassum muticum     |     |     | R   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Algal mat             |     |     |     | F   | R   |     |     |     |     |     |     |     |     |     | С   | F   |

Table 1.6. Abundance of biota at stations along 5 transects (KA - KE). SACFOR abundances are given derived from all sampling methods employed, including core sampling, visual observation of biota when digging over a total area of sediment of c.  $1 m^2$  and by estimation of the abundance of Arenicola casts and Lanice tubes. At sites where replicate core samples were taken, only the first replicate has been employed here, in order to standardise the methodology and facilitate comparisons.

|                                 |     |     |     |     |     |     |     | Si  | ite |     |     |     |     |     |     |     |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Taxon                           | KA1 | KA2 | KA3 | KB1 | KB2 | KB3 | KC1 | KC2 | КСЗ | KC4 | KD1 | KD2 | KD3 | KE1 | KE2 | KE3 |
| Nemertea spp                    |     | С   | С   |     |     | С   |     |     |     |     |     |     |     |     |     |     |
| Lineus sp                       |     |     |     |     |     |     |     |     |     |     |     | С   |     |     |     |     |
| Harmothoe sp juv                |     |     |     |     |     |     |     |     |     |     |     |     | С   |     |     |     |
| Phyllodocidae sp                |     |     |     |     |     |     |     |     |     |     |     |     |     |     | C   |     |
| indet                           |     |     |     |     |     |     |     |     |     |     |     |     |     |     | U   |     |
| Eteone longa                    |     |     |     |     |     |     |     | С   |     |     |     | С   |     | С   | С   | С   |
| Phyllodoce mucosa               |     | С   | С   |     | С   |     |     |     |     | С   |     |     |     |     |     |     |
| Kefersteinia cirrata            |     |     |     |     |     |     |     |     |     |     |     | С   | С   | С   | С   | С   |
| Syllis sp E                     |     |     |     |     |     |     |     |     |     |     |     |     | С   |     |     |     |
| Streptosyllis websteri          |     | С   | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Parexogone hebes                |     |     | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Exogone (Exogone)<br>verugera   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nereididae sp juv               |     |     | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nereidae sp                     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | F   |
| Alitta virens                   |     |     | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Hediste diversicolor            |     | С   |     |     |     |     |     | Α   | С   |     | Α   | С   | С   | Α   | С   |     |
| Nephtys cirrosa                 |     | Α   | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Nephtvs homberaii               |     |     | С   | С   | С   | С   | F   | F   | С   | С   |     |     | F   |     | F   | С   |
| <i>Glycera</i> sp               |     | F   | F   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Protodorvillea<br>kefersteini   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Schistomeringos<br>neglecta     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Leitoscoloplos                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | ~   |
| mammosus                        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | C   |
| Scoloplos (Scoloplos)           |     | C   | Λ   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| armiger                         |     | C   | ^   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Aricidea (Aricidea)             |     | С   | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| minuta                          |     | -   | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spionidae sp                    |     |     | С   |     |     |     |     |     |     | С   |     |     |     |     |     |     |
| Juv/Indet<br>Aonides oxycenhala |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Malacoceros                     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| tetracerus                      |     |     |     |     |     |     |     | Α   | С   |     |     |     | С   |     | С   |     |
| Polvdora cornuta                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Pseudopolvdora                  |     | ~   | ~   |     |     |     |     |     |     |     |     |     |     |     |     | ~   |
| pulchra                         |     | С   | C   |     |     |     |     |     |     |     |     |     |     |     |     | C   |
| Pygospio elegans                |     | F   | F   | F   | F   |     | F   | Α   | Α   | F   |     | F   | С   |     | С   | С   |
| Scolelepis                      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| (Scolelepis) foliosa            |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Scolelepis                      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| (Scolelepis)                    | С   |     | С   |     |     |     |     |     |     |     |     |     |     |     |     |     |
| squamata                        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spio martinensis                | 1   | 1   |     |     | 1   | 1   |     |     | 1   |     |     |     |     |     |     | C   |

|                            |     |     |          |     |          |          |     | S        | ite      |     |     |          |     |     |     |     |
|----------------------------|-----|-----|----------|-----|----------|----------|-----|----------|----------|-----|-----|----------|-----|-----|-----|-----|
| Taxon                      | KA1 | KA2 | KA3      | KB1 | KB2      | KB3      | KC1 | KC2      | КСЗ      | KC4 | KD1 | KD2      | KD3 | KE1 | KE2 | KE3 |
| Chaetozone christiei       |     | С   | Α        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Cirriformia<br>tentaculata |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Flabelligera affinis       |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Capitella capitata         |     |     | С        |     | С        |          |     | С        | С        |     |     |          | С   |     | С   |     |
| Mediomastus fragilis       |     | С   |          |     | _        |          |     |          |          |     |     |          |     |     | _   |     |
| Notomastus                 |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| latericeus                 |     | С   |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Arenicola marina           |     |     | С        | Α   | Α        | Α        | Α   | С        | С        | Α   |     | С        | Α   | Α   | Α   | Α   |
| Leiochone leiopygos        | С   | С   | С        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Euclymene oerstedi         |     |     | С        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Maldanidae sp              |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     | F   |
| Travisia forbesii          |     | С   |          |     |          | Α        |     |          |          |     |     |          |     |     |     |     |
| Polyophthalmus             |     | _   |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| pictus                     |     |     | С        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Amphitrite cirrata         |     |     |          |     |          |          |     |          |          |     | С   |          |     |     |     |     |
| Polvcirrus medusa          |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Lanice conchilega          |     | С   | С        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Fabricia stellaris         |     |     |          | F   | С        |          | F   |          |          |     |     |          |     |     | F   | F   |
| Spirobranchus              |     |     | С        | -   |          |          | -   |          |          |     |     |          |     |     |     | -   |
| iamarcki                   |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Paranais litoralis         |     | _   |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Tubificidae spp            |     | 0   |          |     |          |          |     | -        |          |     |     |          |     |     |     |     |
| Clitellio arenarius        |     |     |          |     |          |          |     | C        | <u> </u> |     |     |          |     | _   | -   |     |
| Baltidrilus costatus       |     |     |          |     |          |          |     | С<br>-   |          |     | _   | F        |     | F   | C   |     |
| Tubificoides benedii       |     |     |          | F   | С        |          |     | F        | F        | F   | F   | C        | C   | С   | A   | F   |
| lubificoides               |     |     | F        |     |          |          | F   | С        | С        | F   |     |          | С   |     | F   |     |
| pseudogaster agg.          |     |     |          |     |          |          |     | <u> </u> | ^        |     |     |          |     |     |     |     |
| Enchytraeidae spp          |     | -   |          |     |          |          |     | C        | A        |     |     |          |     |     |     |     |
| Grania spp                 |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Semibalanus<br>balanoides  |     |     |          | R   |          |          |     | F        | Р        |     |     |          |     | Р   |     |     |
| Austrominius               |     |     |          | R   |          |          |     |          | Р        |     |     |          |     | Р   |     |     |
| modestus                   |     |     |          | -   |          |          | -   | -        | -        |     |     |          |     | -   |     |     |
| Neomysis integer           |     |     |          | С   | С        |          | C   | C        |          | A   |     |          |     |     |     |     |
| <i>Praunus</i> sp          |     |     |          |     |          |          | С   |          |          |     |     |          |     |     |     |     |
| Apherusa bispinosa         |     |     |          |     |          |          |     |          |          |     |     |          | F   |     |     |     |
| Tryphosella sarsi          |     |     |          |     |          |          |     |          |          |     |     |          |     | F   |     |     |
| Bathyporeia                |     | F   |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| guilliamsoniana            |     |     |          |     |          | _        |     |          |          |     |     |          |     |     |     |     |
| Bathyporeia pilosa         |     | _   |          |     |          | F        |     |          |          |     |     |          |     |     |     |     |
| Melitidae sp indet         |     | F   |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Melita palmata             |     |     |          |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Microprotopus<br>maculatus |     |     | F        |     |          |          |     |          |          |     |     |          |     |     |     |     |
| Crassicorophium            |     |     |          |     |          |          |     |          | F        |     |     |          | F   | C   | F   |     |
| bonellii                   |     |     | <u> </u> |     |          | <u> </u> |     |          |          |     |     | <u> </u> |     |     |     |     |
| Crassicorophium            |     | F   |          |     |          |          |     | F        |          |     |     |          |     |     |     |     |
| crassicorne                |     |     | ļ        |     | <u> </u> | ļ        |     |          |          |     |     | <u> </u> |     | ļ   |     |     |
| Corophium volutator        | 1   | 1   |          |     | F        |          |     | F        | F        |     | F   | F        | С   |     |     |     |

|                              |     |     |     |     |     |          |     | S   | ite |     |          |          |     |     |     |     |
|------------------------------|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|----------|----------|-----|-----|-----|-----|
| Taxon                        | KA1 | KA2 | KA3 | KB1 | KB2 | KB3      | KC1 | KC2 | ксз | KC4 | KD1      | KD2      | KD3 | KE1 | KE2 | KE3 |
| Eurydice pulchra             | F   |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Eualus pusiolus?             |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Crangon crangon              |     |     | F   | С   | С   | С        | С   | С   | С   |     |          | С        | С   |     | С   | С   |
| Pagurus bernhardus           |     |     | Α   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Carcinus maenas              |     | С   |     | С   | Α   | С        |     |     | С   | С   |          |          | С   | С   |     |     |
| Chironomidae spp             |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Lepidochitona                |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| (Lepidochitona)              |     | С   | С   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| cinerea                      |     |     |     |     |     |          |     |     | _   |     |          |          |     |     |     |     |
| Littorina littorea           |     |     |     |     |     |          |     |     | С   |     |          |          |     |     |     |     |
| <i>Littorina</i> spp juv     |     |     |     |     | F   |          |     |     |     |     |          | F        |     |     |     |     |
| Peringia ulvae               |     |     |     | С   | Α   |          | F   | F   |     |     | С        | С        | F   | Α   | Α   | F   |
| Retusa obtusa                |     | F   |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Lucinoma borealis            |     | Α   | С   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Kurtiella bidentata          |     | С   |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Cerastoderma edule<br>(juvs) | С   | А   | С   | А   | А   |          | А   | А   | А   | С   |          | С        | С   | С   | А   | А   |
| Cerastoderma edule           |     | C   |     | ٨   | C   | C        |     | C   | C   |     |          | C        |     |     |     |     |
| (adults)                     |     | C   |     | A   | C   | C        |     | C   | C   |     |          | C        |     |     |     |     |
| Mytilus edulis               |     |     |     |     |     |          |     |     | 0   |     |          |          |     |     |     |     |
| Tellina tenuis               |     | С   |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Macoma balthica              |     |     |     | С   | С   |          |     |     |     |     | С        | С        |     |     | С   | С   |
| Scrobicularia plana          |     |     |     |     |     |          |     |     |     |     | С        | С        | С   | С   | С   |     |
| <i>Dosinia</i> spp juv       |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| <i>Mya</i> sp                |     |     |     |     |     |          |     |     |     |     |          |          | F   |     |     |     |
| Polititapes                  |     | Δ   | S   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| rhomboides                   |     | ~   | 0   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Venerupis corrugata          |     |     | F   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Ensis ensis                  |     |     | С   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Thracia phaseolina           |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Phoronis spp                 |     | Α   | Α   |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Antedon bifida               |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Unidentified sp.             |     |     |     |     |     |          |     |     |     |     |          |          |     |     |     |     |
| Arionidae spp                |     |     |     |     |     |          |     |     |     |     |          | С        | С   |     |     |     |
| (terrestrial slugs)          |     |     |     |     |     |          |     |     |     |     |          | Ŭ        | Ŭ   |     |     |     |
| Araneae spp                  |     |     |     |     |     |          |     |     |     |     | F        |          |     |     |     |     |
| (terrestrial spiders)        |     |     |     | _   |     |          |     | _   | _   |     | _        | _        |     |     | 5   |     |
| Fucus vesiculosus            |     | R   |     | R   |     |          |     | ĸ   | ĸ   |     | Р        | Р        |     | 5   | R   |     |
| Fucus spiralis               |     |     |     |     |     |          |     |     |     |     |          |          |     | R   |     |     |
|                              |     |     | -   |     |     |          |     |     |     |     |          |          |     | к   |     |     |
| Chorda filum                 |     |     | R   |     |     | <u> </u> |     |     |     |     | <u> </u> | <u> </u> |     |     |     |     |
| Sargassum muticum            |     |     | R   |     |     | <u> </u> |     |     |     |     | <u> </u> | <u> </u> |     |     |     |     |
| Green filamentous            |     |     |     | F   | R   |          |     |     |     |     |          |          |     |     | С   | F   |



Figure 1.1. Cumulative weight of sediment retained on sieves at 0.5 phi intervals for stations along transect KA.

*Figure 1.2. Cumulative weight of sediment retained on sieves at 0.5 phi intervals for stations along transect KB.* 



Figure 1.3. Cumulative weight of sediment retained on sieves at 0.5 phi intervals for stations along transect KC.



*Figure 1.4. Cumulative weight of sediment retained on sieves at 0.5 phi intervals for stations along transect KD.* 





Figure 1.5. Cumulative weight of sediment retained on sieves at 0.5 phi intervals for stations along transect KE.

# ANNEX 2: SITE ATTRIBUTE TABLE FOR THE MUDFLAT FEATURE OF KENTRA BAY AND MOSS SSSI, WITH THE RESULTS OF THE 2014 SITE CONDITION MONITORING SURVEY. \* DENOTES NON MANDATORY ATTRIBUTE.

| Attribute                                                                   | Target                                                                                                                                                                                                                                                                                                                                                                           | Method                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extent                                                                      | No change in extent allowing for<br>natural succession or known<br>cyclical change.                                                                                                                                                                                                                                                                                              | Extent should be assessed periodically against a baseline map showing the distribution of littoral sediment, or through the review of any known activities that may have caused an alteration in extent.<br>Possible sources of baseline data are archive remote sensing, aerial photographs and intertidal resource mapping (see Davies <i>et al.</i> , 2001). | No activities identified likely to have<br>caused change in the extent of the<br>mudflat feature. Transect profiles also<br>indicate no reduction in extent of the<br>habitat at the five locations examined.                                                                                                                                                                                                                                                                 |
| Sediment<br>character:<br>sediment type                                     | No change in composition of<br>sediment type across the feature,<br>allowing for natural<br>succession/known cyclical change.<br>Percentage of silt/clay and sand<br>as defined in Hiscock (1996)<br>should not deviate from baseline<br>by +/- 10% at each station<br>(Hiscock, K. 1996. Marine Nature<br>Conservation Review: Rationale<br>and Methods. Peterborough:<br>JNCC) | Distribution of sediment types should be assessed<br>across the whole feature and compared to baseline<br>conditions.<br>Core samples to be taken at 16 stations along<br>relocatable transects and analysed for particle size every<br>6 years.                                                                                                                | An increase in sand content of 22% at<br>station KD4 consistent with natural<br>translocation of gravel material in a<br>region with patches of scattered gravel.<br>An increase in recorded silt/clay content<br>of 23% at station KD2 may have arisen<br>through spatial variability in the depth of<br>the sandier stratum underlying the<br>surface muddy sand layer. No evidence<br>to implicate unusual or non-natural<br>factors in the causation of these<br>changes. |
| *Sediment<br>character:<br>oxidation-<br>reduction profile<br>(Redox layer) | Average depth to the top of the<br>black layer should not decrease in<br>relation to baseline. The depth of<br>the black layer will not deviate by<br>+/- 50% from the baseline for<br>sediments with a baseline black<br>layer depth of >1 cm                                                                                                                                   | A visual estimate of the depth of the anaerobic layer will<br>be taken at 16 stations along 5 relocatable transects<br>every 6 years.                                                                                                                                                                                                                           | No reduction in black layer depth at any<br>station of more than 50% where baseline<br>value >1 cm. Depth increased by >50%<br>at 2 sites with baseline value >1 cm.<br>Change consistent with natural variation.                                                                                                                                                                                                                                                             |
| *Sediment<br>character:<br>Organic carbon<br>content                        | Organic carbon content should not<br>increase in relation to an<br>established baseline.                                                                                                                                                                                                                                                                                         | Organic carbon content assessed in specified area.<br>For details of assessment techniques see the Common<br>Standards Monitoring Guidance and Davies <i>et al.</i> , 2001.                                                                                                                                                                                     | Attribute not assessed.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Attribute                                          | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method                                                                                                                                                                                                                              | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biotope<br>composition                             | Maintain the variety of biotopes<br>identified for the site, allowing for<br>natural succession/ known cyclical<br>change. The following biotopes (or<br>equivalents) will be found within<br>the SSSI:<br>LS.LSa.FiSa.Po,<br>LS.LSa.MuSa.Lan,<br>LS.LSa.MuSa.MacAre,<br>LS.LSa.MuSa.HedMacEte,<br>LS.LBR.LMus.Myt.Sa,<br>LS.LMu.MEst.HedMac,<br>LS.LMu.MEst.HedMacScr                                                                                                                                                                                                                                                  | Assessment of the presence of biotopes by visual<br>survey, infaunal core sampling and digover of 1 m <sup>2</sup> area<br>at fixed stations along 5 relocatable transects.                                                         | All biotopes found within the SSSI.<br><b>LS.LBR.LMus.Myt.Sa</b> not recorded<br>along transects due to reduction in<br>density of <i>Mytilus edulis</i> . Reduction<br>considered due to natural temporal<br>variation.                                                                                                                                                                                                                                                                                                           |
| Distribution and<br>spatial pattern<br>of biotopes | Maintain the distribution of<br>biotopes, allowing for natural<br>succession/ known cyclical<br>change. The following biotopes will<br>be found at the indicated relocated<br>transects:<br><i>Transect KA</i> :<br>LS.LSa.FiSa.Po,<br>LS.LSa.MuSa.Lan<br><i>Transect KB</i> :<br>LS.LSa.MuSa.MacAre,<br>LS.LSa.FiSa.Po<br><i>Transect KC</i> :<br>LS.LSa.MuSa.MacAre,<br>LS.LSa.MuSa.MacAre,<br>LS.LSa.MuSa.HedMacEte,<br>LS.LBR.LMus.Myt.Sa<br><i>Transect KD</i> :<br>LS.LMu.MEst.HedMac,<br>LS.LMu.MEst.HedMacScr<br><i>Transect KE</i> :<br>LS.LMu.MEst.HedMacScr,<br>LS.LMu.MEst.HedMacScr,<br>LS.LSa.MuSa.MacAre | Assessment of the distribution of biotope(s) identified for<br>the site along 5 relocatable transects every 6 years by<br>means of visual survey, infaunal core sampling and<br>digover of 1 m <sup>2</sup> area at fixed stations. | LS.LSa.FiSa.Po absent from transect<br>KA probably due to changes in sediment<br>conditions resulting from natural<br>variation in the hydrodynamic<br>environment and extension of the <i>Lanice</i><br><i>conchilega</i> population from lower down<br>the shore. Absence of<br>LS.LBR.LMus.Myt.Sa from transect KC<br>likely to have resulted from natural<br>temporal variation in success of the<br><i>Mytilus edulis</i> population. No other clear,<br>marked change in biotope distribution<br>along transects identified. |

| Attribute                                                                                      | Target                                                                                                                                                                                                                                                                                                                                                                                | Method                                                                                                                                                                                                                                                                                                                                                               | Result                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Species<br>population<br>measures -                                                          | Maintain presence or abundance<br>of named positive indicator<br>species.<br><i>Cerastoderma edule</i> will be                                                                                                                                                                                                                                                                        | Population structure should be assessed in terms of<br>viability of the named species identified for the feature.<br>Assessment of the presence or abundance of<br>positive/negative indicator species identified for the                                                                                                                                            | Only <i>Corophium volutator</i> failed to meet target with frequency of occurrence of 38%. Failure due to replacement of <i>C. volutator</i> by similar species,                                                                                                                                                     |
| Presence or<br>abundance of<br>specified<br>species<br>Population<br>structure of a<br>species | present at 50% or more of the<br>sample stations. Arenicola marina<br>will be present at 50% or more of<br>the sample stations. Hediste<br>diversicolor will be present at 30%<br>or more of the sample stations.<br>Corophium volutator will be<br>present at 40% or more of the<br>sample stations. Scrobicularia<br>plana will be present at 25% or<br>more of the sample stations | feature by means of visual survey, infaunal core<br>sampling and digover of 1 m <sup>2</sup> area at fixed stations along<br>5 relocatable transects every 6 years.                                                                                                                                                                                                  | <i>Crassicorophium bonnellii</i> , at 2 stations.<br>Apparent change possibly due to<br>identification error of baseline samples<br>or possibly due to natural temporal<br>variation.                                                                                                                                |
| *Species<br>composition of<br>representative<br>or notable<br>biotopes                         | No decline in biotope quality due<br>to change in species composition<br>or loss of notable species allowing<br>for natural succession/ known<br>cyclical change.                                                                                                                                                                                                                     | Assessment of biotope quality through assessing<br>species composition, where the biotope is representative<br>of the site or contains a number of species of<br>conservation importance.<br>Assess change in species composition at fixed stations<br>along 5 relocatable transects every 6 years with the aid<br>of multivariate techniques and diversity measures | Marked reduction in diversity at one<br>station (KA1) considered to result from<br>natural variation in hydrodynamic<br>conditions. Appearance of sparse<br><i>Sargassum muticum</i> at KA3 considered<br>to have insignificant impact on habitat<br>condition.                                                      |
| * Extent of sub-<br>feature or<br>representative/<br>notable<br>biotopes                       | No change in extent of the littoral<br>sediment biotope(s) identified for<br>the site allowing for natural<br>succession/known cyclical change.                                                                                                                                                                                                                                       | Assessment of the extent of biotope(s) identified for the site because of their nature conservation importance.<br>No such biotopes identified for this site.                                                                                                                                                                                                        | Attribute not assessed.                                                                                                                                                                                                                                                                                              |
| *Topography                                                                                    | No change in topography of the<br>littoral sediment, allowing for<br>natural responses to<br>hydrodynamic regime.                                                                                                                                                                                                                                                                     | Tidal elevation and shore slope to be assessed<br>periodically by mean of measurement of the profile along<br>5 relocatable transects every 6 years.                                                                                                                                                                                                                 | No significant temporal changes in<br>transect profiles recorded. Minor<br>changes along 2 transects due to natural<br>changes in course or width of channel.<br>Loss of c. 30 cm of sediment along<br>transect KA considered to reflect natural<br>hydrodynamic variability at this relatively<br>exposed location. |

# ANNEX 3: BIOTOPE MAPPING DATA - TARGET NOTES

Table 3.1. Temporal, locational and sediment data collected at target note sites.

| Site   | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                                                     | Moisture                      | Surface<br>features | Black<br>layer (cm) |
|--------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|---------------------------------------------------------------|-------------------------------|---------------------|---------------------|
| K1.83  | 12/08/2014 | 56.76024          | 5.87352            | 163343           | 769882            | 77         | 13:40:58      | clean fine sand                                               | waterlogged                   | rippled             | <30                 |
| K1.84  | 12/08/2014 | 56.75960          | 5.87499            | 163249           | 769816            | 79         | 13:59:28      |                                                               |                               |                     |                     |
| K1.84B | 12/08/2014 | 56.76165          | 5.87146            | 163478           | 770032            | 80         | 14:10:22      | slightly muddy sand                                           | waterlogged, pools            | slightly<br>rippled | 0.2                 |
| K1.85  | 12/08/2014 | 56.76116          | 5.87193            | 163446           | 769979            | 81         | 14:26:46      | clean fine sand                                               | damp                          | rippled             | 3                   |
| K1.86  | 12/08/2014 | 56.76105          | 5.87243            | 163415           | 769969            | 82         | 14:40:04      |                                                               |                               |                     |                     |
| K1.86B | 12/08/2014 | 56.76030          | 5.87025            | 163543           | 769878            | 83         | 15:04:20      | fine sand                                                     | waterlogged                   | rippled             | <30                 |
| K4.82  | 12/08/2014 | 56.75970          | 5.86756            | 163704           | 769802            | 76         | 13:15:40      | clean fine sand                                               | damp with large pools         | rippled             | <30                 |
| K5.81  | 12/08/2014 | 56.75943          | 5.86820            | 163663           | 769774            | 75         | 12:58:14      | fine sand                                                     | waterlogged                   | rippled             | 0.2, locally<br>2.5 |
| K5.87  | 12/08/2014 | 56.75977          | 5.86916            | 163607           | 769815            | 84         |               | clean fine sand                                               | dry                           | rippled             |                     |
| K7.99  | 13/08/2014 | 56.75601          | 5.86610            | 163770           | 769386            | 94         | 14:29:27      | clean fine sand, in<br>waves                                  | damp,<br>varying to<br>pooled | rippled             | 30                  |
| K8.04  | 09/08/2014 | 56.75679          | 5.86270            | 163982           | 769461            | 27         | 10:24:03      | fine sand                                                     | standing<br>water             | rippled             | 1                   |
| K8.06  | 09/08/2014 | 56.75811          | 5.86546            | 163822           | 769618            | 29         | 11:03:32      | fine sand                                                     | waterlogged, pools            | rippled             | 0.2                 |
| K8.07  | 09/08/2014 | 56.75912          | 5.86595            | 163799           | 769732            | 30         | 11:17:31      | fine sand with<br>broken shell                                |                               |                     |                     |
| K8.08  | 09/08/2014 | 56.75852          | 5.86733            | 163711           | 769670            | 31         | 11:29:15      | fine sand with<br>broken shell and<br>dead maerl<br>fragments | dry                           | faintly<br>rippled  | >30                 |
| K8.09  | 09/08/2014 | 56.75838          | 5.86842            | 163643           | 769658            | 32         | 11:47:23      | fine sand                                                     | waterlogged                   | rippled             | 20                  |
| K8.10  | 09/08/2014 | 56.75698          | 5.86513            | 163835           | 769491            | 33         | 12:21:28      | fine sand                                                     | waterlogged                   | rippled             | >30                 |

| Site   | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                                                             | Moisture                       | Surface<br>features          | Black<br>layer (cm) |
|--------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|-----------------------------------------------------------------------|--------------------------------|------------------------------|---------------------|
| K8.12  | 09/08/2014 | 56.75477          | 5.86153            | 164041           | 769233            | 35         | 13:14:36      | fine sand                                                             | waterlogged                    | rippled                      | 1                   |
| K8.70  | 11/08/2014 | 56.75315          | 5.86093            | 164068           | 769050            | 68         | 13:50:49      | fine sand                                                             | damp                           | rippled                      | 0.5                 |
| K8.71  | 11/08/2014 | 56.75240          | 5.85646            | 164336           | 768952            | 69         |               | fine sand                                                             | waterlogged, pools             | rippled                      | 1.5                 |
| K8.80  | 12/08/2014 | 56.75879          | 5.86825            | 163656           | 769703            | 74         | 12:33:14      | clean fine sand<br>with some dead<br>maerl                            | damp                           | rippled                      | <30                 |
| K8.94  | 13/08/2014 | 56.75602          | 5.86078            | 164095           | 769369            | 89         | 13:08:38      | clean fine sand                                                       | standing<br>water              | rippled                      | 1.5                 |
| K8.98  | 13/08/2014 | 56.75473          | 5.86383            | 163901           | 769236            | 93         | 14:15:19      | clean fine sand                                                       | damp; water<br>table at 8 cm   | rippled                      | 3                   |
| K9.05  | 09/08/2014 | 56.75961          | 5.86440            | 163896           | 769781            | 28         | 10:49:03      | slightly muddy fine sand                                              | standing<br>water              | lugworm<br>hummocks          | 0.2                 |
| K10.01 | 09/08/2014 | 56.75966          | 5.85422            | 164519           | 769751            | 24         | 09:14:16      | fine sand                                                             | standing,<br>pooled water      | flat                         | 0.5                 |
| K10.15 | 09/08/2014 | 56.75564          | 5.85377            | 164521           | 769303            | 37         | 14:52:48      | slightly muddy<br>sand with<br>scattered gravel<br>and shells         | moist - water<br>table at 5 cm | flat                         | 0.2                 |
| K10.90 | 13/08/2014 | 56.76072          | 5.85533            | 164457           | 769873            | 85         | 12:10:00      | slightly muddy fine sand                                              | waterlogged                    | flat                         | 2                   |
| K10.91 | 13/08/2014 | 56.76014          | 5.85590            | 164419           | 769810            | 86         | 12:20:55      |                                                                       |                                |                              |                     |
| K10.92 | 13/08/2014 | 56.75975          | 5.85358            | 164558           | 769759            | 87         | 12:26:53      | slightly muddy fine<br>sand - similar to<br>previous site<br>(K10.91) | waterlogged                    | small<br>lugworm<br>hummocks | 2                   |

| Site    | Date       | Latitude | Longitude | Easting | Northing | WPT | Time                       | Substrate                                                                                                                                                                     | Moisture                          | Surface                                     | Black      |
|---------|------------|----------|-----------|---------|----------|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|------------|
|         |            | WG584    | WGS84     | (BNG)   | (BNG)    | no. | (BST)                      |                                                                                                                                                                               |                                   | teatures                                    | layer (cm) |
| K10.93  | 13/08/2014 | 56.75780 | 5.85226   | 164627  | 769538   | 88  | 12:47:36                   | patchwork of<br>dense <i>Arenicola</i><br>on slightly muddy<br>sand and raised<br>gravelly sand<br>scars with dense<br>gravel on surface.<br>Station in raised<br>gravel area | damp                              |                                             | 2          |
| K11.02  | 09/08/2014 | 56.75851 | 5.85675   | 164357  | 769632   | 25  | 09:35:48                   | fine, very slightly<br>muddy sand                                                                                                                                             | standing<br>water                 | lugworm<br>hummocks                         | 0.3        |
| K11.03  | 09/08/2014 | 56.75761 | 5.86041   | 164128  | 769545   | 26  | 10:12:10                   | fine, very slightly<br>muddy sand                                                                                                                                             | standing<br>water                 | lugworm<br>hummocks                         | 0.5        |
| K11.13  | 09/08/2014 | 56.75117 | 5.85504   | 164415  | 768810   |     | 13:52:00<br>to<br>13:58:16 | very slightly<br>muddy fine sand                                                                                                                                              | waterlogged                       |                                             |            |
| K11.14  | 09/08/2014 | 56.75154 | 5.85341   | 164517  | 768845   | 36  | 14:20:43                   | fine sand with very<br>slight mud content                                                                                                                                     | standing<br>water                 | lugworm<br>hummocks                         | 0.5        |
| K11.60  | 11/08/2014 | 56.75141 | 5.85104   | 164661  | 768823   | 58  | 10:35:59                   | very slightly<br>muddy fine sand                                                                                                                                              | waterlogged                       | small<br>ripples                            | 0.6        |
| K11.100 | 13/08/2014 | 56.75734 | 5.85635   | 164374  | 769501   | 95  | 15:07:30                   | very slightly muddy fine sand                                                                                                                                                 | waterlogged,<br>standing<br>water | small<br>lugworm<br>hummocks                | 0.2        |
| K12.11  | 09/08/2014 | 56.75404 | 5.86559   | 163789  | 769165   | 34  | 12:53:02                   | clean fine sand                                                                                                                                                               | dry                               | rippled                                     | 25         |
| K12.24  | 10/08/2014 | 56.75243 | 5.86854   | 163598  | 768997   | 47  | 12:29:44                   | fine sand                                                                                                                                                                     | waterlogged                       | rippled                                     | 4          |
| K12.25  | 10/08/2014 | 56.75227 | 5.86486   | 163822  | 768966   | 48  | 12:53:26                   | fine sand                                                                                                                                                                     | waterlogged                       | rippled,<br>black<br>marbling<br>on surface | 0.1        |
| K12.26  | 10/08/2014 | 56.75068 | 5.86256   | 163953  | 768781   | 49  | 13:12:06                   | fine sand                                                                                                                                                                     | waterlogged, pools                | faintly<br>rippled                          | 0.6        |

| Site   | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                          | Moisture                                       | Surface<br>features | Black<br>layer (cm) |
|--------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|------------------------------------|------------------------------------------------|---------------------|---------------------|
| K12.27 | 10/08/2014 | 56.74951          | 5.86005            | 164099           | 768643            | 50         | 13:24:08      | fine sand                          |                                                |                     |                     |
| K12.95 | 13/08/2014 | 56.75451          | 5.86728            | 163688           | 769224            | 90         | 13:39:24      | clean fine sand,<br>slightly waved | damp with<br>water at 10<br>cm. Large<br>pools | rippled             | none seen           |
| K12.96 | 13/08/2014 | 56.75461          | 5.86620            | 163755           | 769231            | 91         | 13:48:36      | clean fine sand,<br>waved          | damp but<br>with pools                         | rippled             | none seen           |
| K12.97 | 13/08/2014 | 56.75470          | 5.64680            | 177160           | 768505            | 92         | 14:07:30      | clean fine sand                    |                                                |                     |                     |
| K13.16 | 10/08/2014 | 56.74910          | 5.87266            | 163326           | 768640            | 39         | 10:24:33      | very muddy sand<br>with gravel     | waterlogged                                    | flat                | 0.5                 |
| K13.17 | 10/08/2014 | 56.74858          | 5.87282            | 163313           | 768583            | 40         | 10:52:02      | very muddy sand                    | waterlogged                                    | lugworm<br>hummocks | 0.2                 |
| K13.18 | 10/08/2014 | 56.74704          | 5.87448            | 163201           | 768418            | 41         | 11:08:38      | muddy sand                         | waterlogged                                    | lugworm<br>hummocks |                     |
| K14.20 | 10/08/2014 | 56.74461          | 5.87070            | 163417           | 768134            | 43         | 11:37:39      | muddy sand with gravel             | waterlogged                                    |                     | 0.1                 |
| K14.21 | 10/08/2014 | 56.74567          | 5.86774            | 163605           | 768242            | 44         | 11:47:40      |                                    | waterlogged,<br>pools                          |                     | 0.1                 |
| K14.22 | 10/08/2014 | 56.74730          | 5.86740            | 163636           | 768422            | 45         | 11:59:02      | slightly muddy sand                | waterlogged, pools                             | lugworm<br>hummocks |                     |
| K14.23 | 10/08/2014 | 56.74820          | 5.86559            | 163752           | 768516            | 46         | 12:05:51      | firm fine sand                     | waterlogged                                    | rippled             | 1                   |
| K14.50 | 10/08/2014 | 56.74611          | 5.86011            | 164074           | 768265            | 51         | 13:39:48      | slightly muddy fine sand           | waterlogged,<br>pools                          | lugworm<br>hummocks | 0.1                 |
| K14.51 | 10/08/2014 | 56.74412          | 5.85994            | 164072           | 768043            | 52         | 13:56:23      | slightly muddy fine sand           |                                                |                     |                     |
| K14.52 | 10/08/2014 | 56.74511          | 5.86225            | 163937           | 768161            | 53         | 14:08:29      | muddy sand with<br>stones          |                                                |                     |                     |
| K14.53 | 10/08/2014 | 56.74350          | 5.86437            | 163797           | 767989            | 54         | 14:20:42      | muddy sand                         | waterlogged,<br>pools                          | lugworm<br>hummocks | 0.5                 |
| K14.54 | 10/08/2014 | 56.74314          | 5.86594            | 163699           | 767954            | 55         | 14:35:17      | muddy sand with gravel             |                                                |                     |                     |

| Site     | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST)             | Substrate                                                         | Moisture           | Surface<br>features          | Black<br>layer (cm) |
|----------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------------------|-------------------------------------------------------------------|--------------------|------------------------------|---------------------|
| K14.68   | 11/08/2014 | 56.74812          | 5.85702            | 164275           | 768477            | 66         | 13:13:15                  | fine sand                                                         | waterlogged        | rippled                      | 0.5                 |
| K15.19   | 10/08/2014 | 56.74351          | 5.87217            | 163320           | 768017            | 42         | 11:20:44                  | very muddy<br>sand/mud                                            | waterlogged        |                              | 0.1                 |
| K15.56   | 10/08/2014 | 56.74549          | 5.87599            | 163099           | 768251            | 57         | 15:02:41                  | muddy sand                                                        | waterlogged, pools |                              |                     |
| K16.55   | 10/08/2014 | 56.74317          | 5.86952            | 163480           | 767970            | 56         | 14:46:54                  | sand with dense<br>gravel and<br>pebbles                          | in channel         |                              |                     |
| K17.120  | 14/08/2014 | 56.74255          | 5.85305            | 164483           | 767844            | 106        | 14:35:23                  | slightly muddy<br>sand, scattered<br>gravel                       | waterlogged        |                              | unclear             |
| K17.128  | 14/08/2014 | 56.74332          | 5.85799            | 164186           | 767947            | 114        | 16:07:37                  | slightly muddy sand                                               |                    |                              | 1                   |
| K17.129  | 14/08/2014 | 56.74280          | 5.85522            | 164352           | 767879            | 115        | 16:20:09                  | muddy sand                                                        | standing<br>water  | flat                         | 5 (grey)            |
| K17.130  | 14/08/2014 | 56.74281          | 5.85481            | 164377           | 767879            | 116        | 16:23:23                  | muddy sand                                                        |                    |                              |                     |
| K17.130B | 14/08/2014 | 56.74292          | 5.85607            | 164301           | 767896            | 117        | 16:35:58                  | muddy sand                                                        | standing<br>water  | lugworm<br>hummocks          |                     |
| K18.127  | 14/08/2014 | 56.74513          | 5.85720            | 164245           | 768146            | 113        | 15:48:02                  | muddy sand with<br>scattered gravel                               | standing<br>water  | flat                         | 0.3 -<br>absent     |
| K19.69   | 11/08/2014 | 56.74947          | 5.85485            | 164416           | 768620            | 67         | 13:29:56<br>to<br>13:34:4 | gravelly sand                                                     |                    |                              |                     |
| K20.61   | 11/08/2014 | 56.75137          | 5.84859            | 164811           | 768810            | 59         | 11:00:50                  | very slightly<br>muddy fine sand                                  | waterlogged        | small<br>lugworm<br>hummocks | 0.5                 |
| K21.62   | 11/08/2014 | 56.75222          | 5.84726            | 164897           | 768900            | 60         | 11:21:43                  | fine sand with<br>dense surface<br>cover of gravel<br>and pebbles | damp               |                              | 0.3                 |
| K21.63   | 11/08/2014 | 56.75222          | 5.84745            | 164886           | 768901            | 61         | 11:42:34                  | fine sand, very slightly muddy                                    | waterlogged        |                              | 0.3                 |

| Site    | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                                                      | Moisture           | Surface<br>features | Black<br>layer (cm) |
|---------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|----------------------------------------------------------------|--------------------|---------------------|---------------------|
| K21.65  | 11/08/2014 | 56.75032          | 5.84761            | 164864           | 768690            | 63         | 12:28:24      | fine sand                                                      | waterlogged        | faint<br>ripples    | 0.1                 |
| K21.67  | 11/08/2014 | 56.74829          | 5.85076            | 164659           | 768475            | 65         | 12:56:19      | fine sand with<br>much shell<br>material                       | waterlogged        | slightly<br>rippled | 0.5                 |
| K21.72  | 11/08/2014 | 56.75288          | 5.84815            | 164847           | 768976            | 70         | 14:53:32      | sand with dense<br>surface scatter of<br>gravel and<br>pebbles |                    |                     |                     |
| K22.73  | 11/08/2014 | 56.75207          | 5.84484            | 165044           | 768875            | 71         | 15:01:02      | slightly muddy<br>sand with gravel                             | waterlogged        | flat                | 0.2                 |
| K22.74  | 11/08/2014 | 56.75092          | 5.84348            | 165120           | 768742            | 72         | 15:24:25      | slightly muddy<br>sand with<br>scattered gravel                | waterlogged        | flat                | 0.3                 |
| K22.75  | 11/08/2014 | 56.75003          | 5.84284            | 165154           | 768641            | 73         | 15:38:13      | slightly muddy<br>sand with gravel<br>on surface               | waterlogged        | flat                | 0.8                 |
| K23.64  | 11/08/2014 | 56.75074          | 5.84602            | 164964           | 768731            | 62         | 12:04:30      | fine sand                                                      | waterlogged, pools | rippled             | 0.7                 |
| K23.66  | 11/08/2014 | 56.74852          | 5.84773            | 164845           | 768490            | 64         | 12:38:04      | fine sand                                                      | waterlogged        | slightly<br>rippled |                     |
| K23.66A | 11/08/2014 | 56.74852          | 5.84773            | 164845           | 768490            | 64         | 12:38:04      | gravel on sand                                                 | dry                |                     |                     |
| K24.115 | 14/08/2014 | 56.74295          | 5.84648            | 164887           | 767866            | 101        | 13:18:25      | soft muddy sand                                                | waterlogged        |                     | 0.2                 |
| K24.116 | 14/08/2014 | 56.74496          | 5.84677            | 164882           | 768091            | 102        | 13:37:09      | very slightly<br>muddy fine sand<br>with gravel cover          |                    |                     |                     |
| K24.117 | 14/08/2014 | 56.74404          | 5.84750            | 164831           | 767991            | 103        | 13:50:52      | muddy sand                                                     | waterlogged        | lugworm<br>hummocks | 1                   |
| K24.118 | 14/08/2014 | 56.74514          | 5.84967            | 164706           | 768121            | 104        | 14:05:42      | slightly muddy sand                                            | waterlogged        | lugworm<br>hummocks |                     |
| K24.119 | 14/08/2014 | 56.74372          | 5.85111            | 164609           | 767968            | 105        |               | slightly muddy sand                                            | waterlogged        | lugworm<br>hummocks | 0.2                 |

| Site    | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                                                                                            | Moisture          | Surface<br>features | Black<br>layer (cm) |
|---------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------|
| K24.121 | 14/08/2014 | 56.74363          | 5.85301            | 164492           | 767964            | 107        | 14:49:03      | soft muddy sand                                                                                      | waterlogged       |                     |                     |
| K24.122 | 14/08/2014 | 56.74461          | 5.85322            | 164485           | 768074            | 108        | 14:58:36      | clean fine sand                                                                                      | waterlogged       | rippled             | 5                   |
| K24.123 | 14/08/2014 | 56.74482          | 5.85290            | 164506           | 768096            | 109        | 15:06:07      | gravel on sand<br>scar                                                                               |                   |                     |                     |
| K24.124 | 14/08/2014 | 56.74603          | 5.85344            | 164481           | 768233            | 110        | 15:13:50      | fine sand as<br>before (e.g.<br>K24.122) but with<br>scattered pebbles<br>and gravel and<br>boulders | waterlogged       | rippled             |                     |
| K24.125 | 14/08/2014 | 56.74659          | 5.85417            | 164440           | 768298            | 111        | 15:26:08      | sand with dense<br>cover of gravel<br>and pebbles and<br>scattered cobbles<br>and boulders           | damp              |                     | 1                   |
| K24.126 | 14/08/2014 | 56.74632          | 5.85396            | 164451           | 768267            | 112        | 15:33:28      | as previous site<br>(K24.125)                                                                        |                   |                     |                     |
| K25.200 | 15/08/2014 | 56.74379          | 5.84512            | 164975           | 767955            | 137        | 16:05:06      | very slightly<br>muddy fine sand<br>with dense cover<br>of gravel and<br>pebbles                     | waterlogged       | flat                |                     |
| K25.201 | 15/08/2014 | 56.74390          | 5.84570            | 164940           | 767969            | 138        | 16:13:34      | very slightly<br>muddy sand with<br>surface cover of<br>gravel and<br>pebbles                        | damp              | flat                | 1                   |
| K25.202 | 15/08/2014 | 56.74392          | 5.84549            | 164953           | 767971            | 139        | 16:30:12      | slightly muddy fine<br>sand with sparse<br>gravel on surface                                         | standing<br>water |                     | 1                   |
| K25.203 | 15/08/2014 | 56.74257          | 5.84592            | 164919           | 767822            | 140        | 16:42:06      | slightly muddy fine<br>sand with sparse<br>gravel on surface                                         | standing<br>water |                     | 0.4                 |

| Site    | Date       | Latitude<br>WGS84 | Longitude<br>WGS84 | Easting<br>(BNG) | Northing<br>(BNG) | WPT<br>no. | Time<br>(BST) | Substrate                                                  | Moisture                                       | Surface<br>features | Black<br>layer (cm) |
|---------|------------|-------------------|--------------------|------------------|-------------------|------------|---------------|------------------------------------------------------------|------------------------------------------------|---------------------|---------------------|
| K25.204 | 15/08/2014 | 56.74132          | 5.84663            | 164867           | 767685            | 141        | 16:55:16      | slightly muddy<br>sand with dense<br>gravel and<br>pebbles | waterlogged,<br>pools and in<br>channel        |                     |                     |
| K25.205 | 15/08/2014 | 56.74146          | 5.84594            | 164911           | 767699            | 142        | 17:01:42      | muddy sand                                                 | waterlogged                                    |                     |                     |
| K26.110 | 14/08/2014 | 56.74106          | 5.84461            | 164989           | 767650            | 96         | 12:20:17      | gravel and<br>pebbles with<br>scattered cobbles            | in channel<br>with small<br>emerged<br>patches |                     |                     |
| K26.111 | 14/08/2014 | 56.74089          | 5.84367            | 165046           | 767627            | 97         | 12:30:18      | pebbles and cobbles                                        | channel                                        |                     |                     |
| K26.112 | 14/08/2014 | 56.74058          | 5.84409            | 165018           | 767594            | 98         | 12:43:38      | mud with scattered gravel, pebbles and cobbles             | waterlogged                                    |                     | 3                   |
| K26.113 | 14/08/2014 | 56.74073          | 5.84477            | 164977           | 767613            | 99         | 12:51:07      | mud                                                        | waterlogged                                    |                     | 3                   |
| K26.114 | 14/08/2014 | 56.74025          | 5.84538            | 164937           | 767562            | 100        | 12:59:11      | mud with scattered<br>gravel, cobbles<br>and boulders      | waterlogged                                    |                     | unclear             |
| K26.131 | 14/08/2014 | 56.74066          | 5.84596            | 164904           | 767610            | 118        | 16:59:50      |                                                            |                                                |                     |                     |

Table 3.2. Habitat notes, biological data and imagery acquired at target note sites. SACFOR abundances obtained from surface features, digover and, at some sites, sieving of sediment. Biotope column gives possible biotopes assigned in the field. Photo file names with prefix of 'SNH\_KENTRA\_2014\_DSCN' and suffix of '.jpg'. Video file names with suffix of ".mp4".

| Site   | Habitat notes                                                                                                        | Biota notes                                                                                                            | Biota - SACFOR                                                                                                     | Sample | Biotope | Photos  | Video | Team   |
|--------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|---------|---------|-------|--------|
| K1.83  | site typical of most of southern area of polygon 1                                                                   |                                                                                                                        | Nephtys cirrosa C, Arenicola marina C,<br>Angulus tenuis F                                                         | Y      |         | 0339-42 |       | CM, KT |
| K1.84  | similar to previous site<br>(K1.83). No <i>Lanice</i> , many<br>sprat (in K69) in pools                              | Dense sprat in<br>pools                                                                                                | Sprattus sprattus P                                                                                                | Y      |         | 0343-47 |       | CM, KT |
| K1.84B | site typical of darker lower<br>area visible on aerial to<br>bottom of slipway (marked on<br>map)                    |                                                                                                                        | Nephtys hombergii F, Scoloplos armiger C,<br>Arenicola marina A                                                    | Y      |         | 0349-53 |       | СМ, КТ |
| K1.85  | drier zone between K1.84B<br>zone and deeper channel<br>running along line of transect<br>KA (sketched)              |                                                                                                                        | Nephtys cirrosa C, Scoloplos armiger C,<br>Arenicola marina C, Maldanidae spp. A,<br>Bathyporeia guilliamsoniana F | Y      |         | 0355-62 |       | CM, KT |
| K1.86  |                                                                                                                      | scattered<br>Sargassum<br>muticum (R),<br>mostly 30-60<br>cm in length<br>(largest c 110<br>cm) on shell<br>and stones | Sargassum muticum R                                                                                                | N      |         | 0364-70 |       | CM, KT |
| K1.86B | probably similar to polygon 3<br>transect site though in<br>localised depression running<br>out from between islands |                                                                                                                        | Arenicola marina C                                                                                                 | N      |         | 0372-75 |       | CM, KT |
| K4.82  | same biotope as K8.80,<br>typical of polygon 4                                                                       |                                                                                                                        | Arenicola marina F, Cerastoderma edule R                                                                           | Ν      |         | 0334-37 |       | CM, KT |

| Site  | Habitat notes                                                                                                                                                                                                 | Biota notes  | Biota - SACFOR                                                                                                                 | Sample | Biotope       | Photos  | Video | Team          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---------|-------|---------------|
| K5.81 | representative of polygon 5<br>which is dark rippled fine sand<br>(black layer 2 mm in places)<br>with reticulated channel<br>running through it. Same<br>biotope also seems to line<br>channel banks locally |              | Alitta virens C, Nephtys hombergii C, Arenicola<br>marina C                                                                    | Y      |               | 0328-31 |       | CM, KT        |
| K5.87 | thin strip of dry sand adjacent<br>to island. Similar to top site in<br>polygon 3                                                                                                                             |              | Arenicola marina F                                                                                                             | Ν      |               | 0377-80 |       | CM, KT        |
| K7.99 | Most of polygon 7 will be the<br>channel. Large sieve sample<br>taken                                                                                                                                         |              | Nephtys cirrosa C, Arenicola marina C,<br>Bathyporeia guilliamsoniana F                                                        | Y      |               | 0422-25 |       | CM, KT,<br>ER |
| K8.04 |                                                                                                                                                                                                               |              | Polychaeta spp. indet. P, <i>Nephtys</i> sp. F,<br><i>Arenicola marina</i> A, Gammaridae sp. O,<br><i>Cerastoderma edule</i> F | N      | MacAre/P<br>o | 0140-41 |       | CM, KT        |
| K8.06 |                                                                                                                                                                                                               |              | Arenicola marina A                                                                                                             | N      | MacAre/P      | 0147-49 |       | CM, KT        |
| K8.07 | transition from waterlogged<br>MacAre? inshore to drier sand<br>- small localised dry area<br>similar to K08.08                                                                                               |              |                                                                                                                                | Ν      |               |         |       | СМ, КТ        |
| K8.08 | dry patchy band running<br>parallel to the channel (lighter<br>shading on aerial photo)                                                                                                                       | nothing seen |                                                                                                                                | N      |               | 0151-54 |       | CM, KT        |
| K8.09 | narrow strip running along<br>channel - visible as darker on<br>aerial photo                                                                                                                                  |              | Nephtys cirrosa C, Arenicola marina C, Lanice<br>conchilega O                                                                  | Y      |               | 0156-58 |       | CM, KT        |
| K8.10 | representative of extensive area                                                                                                                                                                              |              | Eteone longa F, Nephtys cirrosa F, Scoloplos<br>armiger F, Arenicola marina A, Maldanidae<br>spp. P, Lanice conchilega R       | Y      |               | 0160-62 |       | CM, KT        |

| Site   | Habitat notes                                                                                                                                                                                                                      | Biota notes | Biota - SACFOR                                                                                                                                                                                                                                                                                                                                      | Sample | Biotope | Photos        | Video | Team          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------------|-------|---------------|
| K8.12  |                                                                                                                                                                                                                                    |             | Nephtys cirrosa F, Arenicola marina A,<br>Maldanidae spp. P, Lanice conchilega F,<br>Crangon crangon F, Mytilus edulis R                                                                                                                                                                                                                            | Y      |         | 0168-70       |       | CM, KT        |
| K8.70  | extensive area alongside<br>channel. Inshore is wet band<br>(possibly depressed) running<br>along polygon. Next site<br>(K8.71) is in wet band. Wet<br>band just visible on aerial as<br>slightly darker. Possibly same<br>biotope |             | Nephtys cirrosa C, Arenicola marina A,<br>Cerastoderma edule C                                                                                                                                                                                                                                                                                      | Y      | Po?     | 0296-99       |       | CM, KT        |
| K8.71  | representative of extensive area                                                                                                                                                                                                   |             | Nephtys cirrosa C, Scoloplos armiger C,<br>Travisia forbesi C, Arenicola marina A,<br>Maldanidae spp. P, Corophium crassicorne C,<br>Cerastoderma edule F                                                                                                                                                                                           | Y      |         | 0301-05       |       | CM, KT        |
| K8.80  | extensive area between channels. Tyre present                                                                                                                                                                                      |             | Nephtys cirrosa F, Arenicola marina F,<br>Bathyporeia pilosa F, Cerastoderma edule F                                                                                                                                                                                                                                                                | Y      |         | 0322-25       |       | CM, KT        |
| K8.94  | definite change from polygon<br>11 with cleaner distinctly<br>rippled sand - no lugworm<br>hummocks. Representative of<br>very large area. Large sieve<br>sample taken                                                             |             | Goniada maculata F, Syllidae sp. F, Nephtys<br>cirrosa F, Scoloplos armiger C, Pygospio<br>elegans C, Spionidae spp. C, Travisia forbesi<br>C, Capitella capitata C, Arenicola marina A,<br>Maldanidae spp. C, Bathyporeia pilosa F,<br>Gammaridae sp. F, Corophium crassicorne C,<br>Crangon crangon A, Carcinus maenas P,<br>Cerastoderma edule F | Y      |         | 0399-<br>0402 |       | CM, KT,<br>ER |
| K8.98  | extensive area. Large sieve sample taken                                                                                                                                                                                           |             | Scoloplos armiger C, Spionidae spp. C,<br>Travisia forbesi C, Arenicola marina C,<br>Maldanidae spp. P, Bathyporeia pilosa F,<br>Bathyporeia guilliamsoniana F, Angulus tenuis<br>C                                                                                                                                                                 | Y      | Po?     | 0416-20       |       | CM, KT,<br>ER |
| K9.05  | channel                                                                                                                                                                                                                            |             | Nephtys sp. F, Arenicola marina A, Lanice<br>conchilega R, Crangon crangon F, Carcinus<br>maenas P, Pink bacterial film F, Diatom film F                                                                                                                                                                                                            | N      |         | 0143-45       |       | CM, KT        |
| K10.01 | representative of polygon                                                                                                                                                                                                          |             | Hediste diversicolor F, Arenicola marina C,<br>Cerastoderma edule C                                                                                                                                                                                                                                                                                 | N      |         | 0131-32       |       | CM, KT        |

| Site   | Habitat notes                                                                                                                                       | Biota notes    | Biota - SACFOR                                                                                                                                                | Sample | Biotope | Photos  | Video | Team          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|-------|---------------|
| K10.15 |                                                                                                                                                     |                | Hediste diversicolor C, Arenicola marina C,<br>Corophium volutator C, Cerastoderma edule F                                                                    | Y      |         | 0176-78 |       | CM, KT        |
| K10.90 | site representative of polygon<br>in region with flat sand and<br>sparse <i>Arenicola</i> . Large sieve<br>sample taken                             |                | Hediste diversicolor A, Arenicola marina F,<br>Peringia ulvae A, Cerastoderma edule F                                                                         | Y      |         | 0382-86 |       | CM, KT,<br>ER |
| K10.91 | transition to dense <i>Arenicola</i> -<br>a little inshore of the polygon<br>boundary                                                               |                | Arenicola marina A                                                                                                                                            | N      |         |         |       | CM, KT,<br>ER |
| K10.92 | localised patch of dense<br><i>Arenicola</i> . Polygon has<br>frequent patches of such<br>dense <i>Arenicola</i> . Large sieve<br>sample taken      |                | Hediste diversicolor C, Nephtys hombergii F,<br>Pygospio elegans F, Arenicola marina A,<br>Tubificoides benedii F, Carcinus maenas P,<br>Cerastoderma edule C | Y      |         | 0389-92 |       | CM, KT,<br>ER |
| K10.93 | adjacent dense <i>Arenicola</i><br>patches similar to previous<br>site (K10.92). Patchwork<br>starts in subpolygon 10B.<br>Large sieve sample taken |                | Hediste diversicolor C, Tubificidae spp. C,<br>Baltidrilus costata F, Enchytraeidae spp. C,<br>Corophium volutator F, Diptera larva F                         | Y      |         | 0394-97 |       | CM, KT,<br>ER |
| K11.02 |                                                                                                                                                     |                | Nephtys hombergii F, Arenicola marina A,<br>Cerastoderma edule F, Percursaria percursa P                                                                      | Y      | MacAre  | 0134-35 |       | CM, KT        |
| K11.03 |                                                                                                                                                     |                | <i>Nephtys</i> sp. F, <i>Arenicola marina</i> A, Diatom film<br>O                                                                                             | N      | MacAre  | 0137-38 |       | CM, KT        |
| K11.13 | walked around fairly sparse<br>mussel bed to determine<br>extent from GPS logger                                                                    |                | Arenicola marina A, Mytilus edulis C                                                                                                                          | N      |         |         |       | CM, KT        |
| K11.14 |                                                                                                                                                     | mysids in pool | Arenicola marina A, Mysidacea sp. P,<br>Cerastoderma edule F, Diatom film F, Fucus<br>vesiculosus R                                                           | N      |         | 0172-74 |       | CM, KT        |
| K11.60 |                                                                                                                                                     |                | Nephtys hombergii C, Arenicola marina A,<br>Cerastoderma edule C, Fucus vesiculosus R                                                                         | Y      | MacAre  | 0249-52 |       | CM, KT        |

| Site    | Habitat notes                                                                                                                                     | Biota notes | Biota - SACFOR                                                                                                                                                                                                                              | Sample | Biotope | Photos  | Video  | Team          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|--------|---------------|
| K11.100 | extensive area of biotope.<br>Large sieve sample taken                                                                                            |             | Nephtys hombergii F, Spio filicornis? C,<br>Pygospio elegans C, Spionidae spp. C,<br>Arenicola marina A, Tubificoides benedii F,<br>Neomysis integer C, Crangon crangon C,<br>Cerastoderma edule C, Pink bacterial film R,<br>Diatom film C | Y      |         | 0427-31 |        | CM, KT,<br>ER |
| K12.11  | light area visible on aerial                                                                                                                      |             | Nephtys cirrosa C, Scolelepis squamata? F                                                                                                                                                                                                   | Y      |         | 0164-66 |        | CM, KT        |
| K12.24  | similar to previous target<br>(K14.23), as was walk<br>between. Last photo looking<br>NE showing dry sand patches<br>on other side of channel     |             | Nephtys cirrosa F, Scoloplos armiger C,<br>Arenicola marina C                                                                                                                                                                               | Y      |         | 0209-13 |        | CM, KT        |
| K12.25  | visible as localised dark patch<br>on aerial                                                                                                      |             | Nephtys cirrosa F, Scoloplos armiger F,<br>Arenicola marina A, Lanice conchilega O,<br>Fabulina fabula F                                                                                                                                    | Y      |         | 0215-17 |        | CM, KT        |
| K12.26  | same biotope since just<br>beyond last target (K12.25)                                                                                            |             | Nephtys hombergii F, Arenicola marina A,<br>Cerastoderma edule F                                                                                                                                                                            | Y      |         | 0219-22 |        | CM, KT        |
| K12.27  | same biotope as previous target (K12.26)                                                                                                          |             |                                                                                                                                                                                                                                             | N      |         |         |        | CM, KT        |
| K12.95  | extensive area of clean fine<br>sand on lower shore, formed<br>into waves, extending to<br>channel, with large pools.<br>Large sieve sample taken |             | Nemertea sp. C, <i>Nephtys cirrosa</i> C, <i>Scoloplos armiger</i> ? C, <i>Spio martinensis</i> ? C, <i>Arenicola marina</i> F, <i>Bathyporeia guilliamsoniana</i> F                                                                        | Y      |         | 0404-08 | K12.95 | CM, KT,<br>ER |
| K12.96  | transition to raised area of<br>sand waves, although biotope<br>possibly similar to previous<br>site (K12.95)                                     |             |                                                                                                                                                                                                                                             | N      |         | 0411-14 |        | CM, KT,<br>ER |
| K12.97  | transition to flatter, wetter<br>rippled sand - see next site<br>(K8.98)                                                                          |             |                                                                                                                                                                                                                                             | N      |         |         |        | CM, KT,<br>ER |

| Site   | Habitat notes                                                                                                                                                                                                                    | Biota notes                   | Biota - SACFOR                                                                                                    | Sample | Biotope          | Photos  | Video | Team   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|------------------|---------|-------|--------|
| K13.16 | site at lower margin of<br>biotope. WPT 38 marks lower<br>margin farther along. Patches<br>of AscX and VesX with AscX<br>tending to occupy upper<br>shore. <i>Mackaii</i> scattered<br>patches throughout, perhaps<br>5% overall | <i>mackaii</i> locally<br>80% | Ascophyllum nodosum O, Ascophyllum<br>nodosum mackaii F(S locally), Fucus<br>vesiculosus A                        | Ν      | VesX and<br>AscX | 0183-86 |       | CM, KT |
| K13.17 |                                                                                                                                                                                                                                  |                               | Nephtys hombergii F, Arenicola marina A,<br>Carcinus maenas P                                                     | Y      | MacAre?          | 0188-90 |       | CM, KT |
| K13.18 | transition to AscX and VesX inshore                                                                                                                                                                                              |                               | Arenicola marina A                                                                                                | Ν      | MacAre           |         |       | CM, KT |
| K14.20 |                                                                                                                                                                                                                                  |                               | Nephtys hombergii F, Arenicola marina A,<br>Tubificoides benedii F, Macoma balthica F                             | Y      | MacAre           | 0196-98 |       | CM, KT |
| K14.21 |                                                                                                                                                                                                                                  |                               | <i>Nephtys</i> sp. F, <i>Arenicola marina</i> A,<br><i>Cerastoderma edule</i> F, Green filamentous<br>algal mat C | N      | MacAre           | 0200-03 |       | CM, KT |
| K14.22 | same as K14.21                                                                                                                                                                                                                   |                               | Arenicola marina A                                                                                                | Ν      | MacAre           |         |       | CM, KT |
| K14.23 | site characteristic of zone.<br>Polygon boundary marks<br>change from muddy sand,<br>hummocked, to firm rippled<br>fine sand                                                                                                     |                               | Arenicola marina A, Lanice conchilega O,<br>Cerastoderma edule F                                                  | Ν      |                  | 0205-07 |       | CM, KT |
| K14.50 | polygon boundary 12/14<br>corresponds with change                                                                                                                                                                                |                               | Nephtys hombergii C, Arenicola marina A,<br>Maldanidae spp. P, <i>Fucus vesiculosus</i> R, Algal<br>mat C         | Y      | MacAre?          | 0226-28 |       | CM, KT |
| K14.51 | same as previous biotope<br>(K14.50) but denser F ves<br>patches                                                                                                                                                                 |                               | Arenicola marina A, Fucus vesiculosus O                                                                           | N      | MacAre?          |         |       | CM, KT |
| K14.52 | small patches of <i>mackaii</i>                                                                                                                                                                                                  |                               | Ascophyllum nodosum P, Ascophyllum<br>nodosum mackaii P                                                           | N      | AscX,<br>mackaii |         |       | CM, KT |
| K14.53 |                                                                                                                                                                                                                                  |                               | Nephtys hombergii F, Heteromastus filiformis<br>F, Arenicola marina A, Fucus vesiculosus R                        | Y      |                  | 0230-33 |       | CM, KT |

| Site     | Habitat notes                                                                          | Biota notes                                               | Biota - SACFOR                                                                                                                                                | Sample | Biotope       | Photos  | Video | Team          |
|----------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---------|-------|---------------|
| K14.54   |                                                                                        | dense patch of<br><i>mackaii</i> c. 50<br>x 8 m in extent | Ascophyllum nodosum mackaii S                                                                                                                                 | N      | mackaii       | 0235-37 |       | CM, KT        |
| K14.68   |                                                                                        |                                                           | Nephtys hombergii F, Scoloplos armiger C,<br>Arenicola marina A, Carcinus maenas C,<br>Cerastoderma edule F                                                   | Y      | MacAre/P<br>o | 0285-88 |       | CM, KT        |
| K15.19   |                                                                                        |                                                           | Hediste diversicolor C, Carcinus maenas P,<br>Scrobicularia plana C, Fucus vesiculosus O                                                                      | Y      |               | 0192-94 |       | CM, KT        |
| K15.56   |                                                                                        | dead<br><i>Scrobicularia</i><br>shells on<br>surface      | Hediste diversicolor C, Nephtys hombergii F,<br>Arenicola marina A, Corophium volutator F,<br>Carcinus maenas C, Fucus vesiculosus R                          | Y      |               |         |       | CM, KT        |
| K16.55   |                                                                                        |                                                           | Ascophyllum nodosum mackaii R, Fucus<br>vesiculosus A, Fucus ceranoides C                                                                                     | N      | VesX?         | 0239-42 |       | CM, KT        |
| K17.120  | characteristic of small upper shore subpolygon                                         |                                                           | Hediste diversicolor A, Neomysis integer A,<br>Carcinus maenas C, Macoma balthica F,<br>Fucus vesiculosus R                                                   | Y      |               | 0487-90 |       | CM, KT,<br>ER |
| K17.128  | black streaks on aerial are<br>gravel. Scars with reduced<br>fauna. Rich fauna at site |                                                           | Nephtys hombergii C, Arenicola marina A,<br>Tubificidae spp. C, Corophium volutator C,<br>Cerastoderma edule F, Scrobicularia plana C,<br>Fucus vesiculosus O | Y      |               | 0521-26 |       | CM, KT,<br>ER |
| K17.129  |                                                                                        |                                                           | Hediste diversicolor F, Nephtys hombergii P,<br>Tubificidae spp. F, Bathyporeia pilosa F,<br>Corophium volutator A                                            | Y      |               | 0528-31 |       | CM, KT,<br>ER |
| K17.130  | eastern biotope boundary of K12.129                                                    |                                                           | Arenicola marina A, Scrobicularia plana P                                                                                                                     | N      |               |         |       | CM, KT,<br>ER |
| K17.130B | eastern boundary of<br><i>Scrobicularia</i> into channel in<br>poly 17                 |                                                           | Arenicola marina A, Scrobicularia plana C                                                                                                                     | N      |               |         |       | CM, KT,<br>ER |
| K18.127  | polygon 18 mostly muddy<br>sand with gravel in varying<br>density                      |                                                           | Hediste diversicolor C, Arenicola marina A,<br>Carcinus maenas C, Macoma balthica C,<br>Scrobicularia plana C, Ascophyllum O, Fucus<br>vesiculosus O          | Y      |               | 0515-19 |       | CM, KT,<br>ER |

| Site   | Habitat notes                                                                                                                                             | Biota notes | Biota - SACFOR                                                                                                                          | Sample | Biotope  | Photos  | Video | Team   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---------|-------|--------|
| K19.69 | Patchy mussel bed. Also<br>mussel patches to west.<br>Mapped by GPS logger                                                                                |             | Mytilus edulis C                                                                                                                        | N      |          | 0290-94 |       | CM, KT |
| K20.61 |                                                                                                                                                           |             | Arenicola marina A, Cerastoderma edule C,<br>Fucus vesiculosus R                                                                        | N      |          | 0254-56 |       | CM, KT |
| K21.62 | Habitat corresponds to black<br>streaks on aerial - slightly<br>raised streaks of gravel and<br>pebbles forming patchwork<br>with sand areas (see K21.63) |             | Hediste diversicolor C, Nephtys hombergii P,<br>Arenicola marina C, Corophium volutator O,<br>Ascophyllum R, Fucus vesiculosus C        | Y      | VesX??   | 0258-60 |       | CM, KT |
| K21.63 | last photo shows sediment patch and Fves transition                                                                                                       |             | Nephtys hombergii F, Capitella capitata juv? F,<br>Arenicola marina A, Tubificidae spp. O,<br>Neomysis integer C, Corophium volutator O | Y      |          | 0262-65 |       | CM, KT |
| K21.65 | site representative of polygon                                                                                                                            |             | Arenicola marina A, Cerastoderma edule F                                                                                                | N      | MacAre?  | 0272-74 |       | CM, KT |
| K21.67 | a few raised gravel patches                                                                                                                               |             | Nephtys sp. C, Arenicola marina A, Fucus vesiculosus O                                                                                  | N      | MacAre?? | 0280-83 |       | CM, KT |
| K21.72 | similar to K21.62                                                                                                                                         |             | Fucus vesiculosus F                                                                                                                     | N      |          |         |       | CM, KT |
| K22.73 | sandy areas interspersed with<br>patches of dense gravel-<br>covered sand with no<br><i>Arenicola</i> evident                                             |             | Nemertea sp. C, <i>Hediste diversicolor</i> C,<br><i>Arenicola marina</i> A, Gammaridae sp. F,<br><i>Corophium volutator</i> C          | Y      |          | 0307-10 |       | CM, KT |
| K22.74 | similar to previous site<br>(K22.73)                                                                                                                      |             | Hediste diversicolor C, Arenicola marina A,<br>Corophium volutator C, Carcinus maenas C,<br>Fucus vesiculosus C                         | Y      |          | 0312-15 |       | CM, KT |
| K22.75 |                                                                                                                                                           |             | Hediste diversicolor C, Arenicola marina C,<br>Corophium volutator C, Carcinus maenas C,<br>Fucus spiralis P, Fucus ceranoides O        | N      |          | 0317-20 |       | CM, KT |
| K23.64 |                                                                                                                                                           |             | Arenicola marina A, Gammaridae sp. O,<br>Crangon crangon F, Cerastoderma edule F                                                        | N      | MacAre?  | 0267-70 |       | CM, KT |
| K23.66 | see K23.66A for<br>accompanying patches of<br>raised gravel on (dry) sand as<br>before (see K21.62 & 63).                                                 |             | Nephtys hombergii F, Arenicola marina A,<br>Tubificidae spp. C, Carcinus maenas C                                                       | Y      | MacAre?? | 0275-78 |       | ĊM, KT |

| Site    | Habitat notes                                                                                                                              | Biota notes | Biota - SACFOR                                                                                                                                                                | Sample | Biotope        | Photos        | Video | Team          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|---------------|-------|---------------|
| K23.66A | patches of raised gravel on<br>(dry) sand as before (see<br>K21.62 & 63). Raised areas<br>with no fauna evident except<br><i>Corophium</i> |             | Corophium volutator P                                                                                                                                                         | Y      |                | 0275-78       |       | CM, KT        |
| K24.115 | biotope probably covers most<br>of inlet around site                                                                                       |             | Hediste diversicolor S, Pygospio elegans F,<br>Arenicola marina F, Tubificoides benedii F,<br>Macoma balthica F, Scrobicularia plana O,<br>Ascophyllum R, Fucus vesiculosus R | Y      |                | 0458-61       |       | CM, KT,<br>ER |
| K24.116 | site characteristic of sketched subpolygon                                                                                                 |             | Hediste diversicolor C, Arenicola marina C,<br>Tubificidae spp. C, Corophium volutator F,<br>Littorina littorea F, Ascophyllum R, Fucus<br>vesiculosus R                      | Y      |                | 0463-66       |       | CM, KT,<br>ER |
| K24.117 |                                                                                                                                            |             | Hediste diversicolor A, Arenicola marina A,<br>Tubificidae spp. F, Corophium volutator F,<br>Scrobicularia plana C                                                            | Y      |                | 0468-73       |       | CM, KT,<br>ER |
| K24.118 | as previous site (K24.117)                                                                                                                 |             | Arenicola marina A, Scrobicularia plana C                                                                                                                                     | N      |                | 0474-79       |       | CM, KT,<br>ER |
| K24.119 |                                                                                                                                            |             | Nephtys hombergii A, Pygospio elegans F,<br>Arenicola marina A, Tubificidae spp. C,<br>Carcinus maenas P, Macoma balthica F,<br>Scrobicularia plana C                         | Y      |                | 0481-85       |       | CM, KT,<br>ER |
| K24.121 | HedMac.Scr as previous sites.<br>Streaking on aerial probably<br>Ascophyllum                                                               |             | Arenicola marina C, Scrobicularia plana C,<br>Ascophyllum nodosum F                                                                                                           | N      | HedMac.<br>Scr | 0492-97       |       | CM, KT,<br>ER |
| K24.122 | possibly Po?                                                                                                                               |             | Arenicola marina A, Bathyporeia pilosa F                                                                                                                                      | Y      | Po?            | 0499-<br>0502 |       | CM, KT,<br>ER |
| K24.123 | gravel scar (minor feature)                                                                                                                |             | Arenicola marina C, Fucus vesiculosus O                                                                                                                                       | N      |                | 0504-07       |       | CM, KT,<br>ER |
| K24.124 | as K24.122 (and K24.123?)                                                                                                                  |             | Arenicola marina C, Fucus vesiculosus O                                                                                                                                       | N      |                | 0509-13       |       | CM, KT,<br>ER |
| K24.125 | site within distinct black scar<br>on aerial. Sparse mussel bed,<br>C in places, elsewhere F                                               | ,           | Hediste diversicolor F, Arenicola marina R,<br>Tubificidae spp. A, Gammaridae sp. F,<br>Cerastoderma edule F, Mytilus edulis C                                                | Y      |                |               |       | CM, KT,<br>ER |

| Site    | Habitat notes                                                                                                                                                                                                                                      | Biota notes | Biota - SACFOR                                                                                                                                                           | Sample | Biotope        | Photos  | Video       | Team          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|---------|-------------|---------------|
| K24.126 | southern edge of mussel bed                                                                                                                                                                                                                        |             |                                                                                                                                                                          | N      |                |         |             | CM, KT,<br>ER |
| K25.200 | 7 m wide band at top of shore<br>below salt marsh along most<br>of bay                                                                                                                                                                             |             | Fucus vesiculosus A, Fucus ceranoides P                                                                                                                                  | N      |                | 0591-93 |             | CM, KT        |
| K25.201 | area with patchwork of slightly<br>lower muddy sand,<br>waterlogged with dense<br><i>Arenicola</i> , and slightly raised<br>damp sand with gravel cover<br>(within which this site is<br>located). Both habitats cover<br>c.50% of the beach each. |             | Hediste diversicolor F, Tubificidae spp. F,<br>Corophium volutator C, Crangon crangon C,<br>Carcinus maenas C, Ascophyllum R, Fucus<br>vesiculosus R, Fucus ceranoides R | Y      |                | 0595-98 | K25.20<br>1 | CM, KT        |
| K25.202 |                                                                                                                                                                                                                                                    |             | Hediste diversicolor F, Arenicola marina A,<br>Tubificidae spp. C, Corophium volutator C,<br>Cerastoderma edule juv. C, Macoma balthica<br>F, Scrobicularia plana C      | Y      | HedMac.<br>Scr | 0601-05 |             | CM, KT        |
| K25.203 |                                                                                                                                                                                                                                                    |             | Arenicola marina A, Corophium volutator C,<br>Scrobicularia plana C, Ascophyllum nodosum<br>R, Fucus vesiculosus R, Fucus ceranoides R                                   | N      | HedMac.<br>Scr | 0607-11 |             | CM, KT        |
| K25.204 | to north of F cer patch, a<br>mosaic of HedMac.Scr and<br>gravel as in north of bay (see<br>K25.205)                                                                                                                                               |             | Fucus ceranoides A                                                                                                                                                       | N      | F cer          | 0613-19 | K25.20<br>4 | CM, KT        |
| K25.205 | patch of HedMac.Scr with<br>adjacent gravel patches                                                                                                                                                                                                |             | Scrobicularia plana C                                                                                                                                                    | N      | HedMac.<br>Scr | 0622-27 |             | CM, KT        |
| K26.110 | most of polygon, except<br>perhaps for the deep bits<br>(minority)                                                                                                                                                                                 |             | Mysidacea sp. P, <i>Fucus ceranoides</i> A                                                                                                                               | N      | F cer          | 0433-37 |             | CM, KT,<br>ER |
| K26.111 |                                                                                                                                                                                                                                                    |             | Fucus ceranoides C                                                                                                                                                       | N      | F cer          | 0439-43 |             | CM, KT,<br>ER |
| K26.112 | mud in sheltered pockets -<br>see also K26.113 which is<br>similar                                                                                                                                                                                 |             | Carcinus maenas P, Fucus ceranoides O                                                                                                                                    | N      |                | 0445-49 |             | CM, KT,<br>ER |

| Site    | Habitat notes                  | Biota notes | Biota - SACFOR                                                                                                 | Sample | Biotope | Photos  | Video       | Team          |
|---------|--------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|--------|---------|---------|-------------|---------------|
| K26.113 | small patch of mud 10 x 10 m   |             | Hediste diversicolor A, Neomysis integer C,<br>Corophium volutator C, Carcinus maenas P,<br>Fucus ceranoides R | Y      |         |         |             | CM, KT,<br>ER |
| K26.114 | large patch 27 x 27 m          |             | Fucus ceranoides O                                                                                             | N      |         | 0451-55 | K26.11<br>4 | CM, KT,<br>ER |
| K26.131 | view from bridge of polygon 26 |             |                                                                                                                | N      |         | 0532-36 | K26.13<br>1 | CM, KT,<br>ER |

# ANNEX 4: PHOTO AND VIDEO LOGS

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                   | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-----------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0100.JPG | KA1          | 2014-08-12<br>11:41:12 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0101.JPG | KA1          | 2014-08-12<br>11:41:21 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0102.JPG | KA1          | 2014-08-12<br>11:41:29 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0103.JPG | KA1          | 2014-08-12<br>11:41:38 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0104.JPG | KA1          | 2014-08-12<br>11:41:52 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0105.JPG | KA1          | 2014-08-12<br>11:42:15 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | Habitat overview of<br>sediment shore         | unknown                   |
| SNH_KENTRA_2014_IMGP0106.JPG | KA1          | 2014-08-12<br>11:42:26 | 56.76009               | -5.87027                | 56.76009              | -5.87027               | Habitat overview of<br>sediment shore         | unknown                   |
| SNH_KENTRA_2014_IMGP0114.JPG | KA2          | 2014-08-12<br>12:33:12 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0115.JPG | KA2          | 2014-08-12<br>12:33:23 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0116.JPG | KA2          | 2014-08-12<br>12:33:33 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0117.JPG | KA2          | 2014-08-12<br>12:33:47 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0118.JPG | KA2          | 2014-08-12<br>12:33:56 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0119.JPG | KA2          | 2014-08-12<br>12:34:08 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | Habitat overview of<br>sediment shore         | unknown                   |
| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                   | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-----------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0120.JPG | KA2          | 2014-08-12<br>12:34:19 | 56.76051               | -5.87138                | 56.76051              | -5.87138               | Habitat overview of<br>sediment shore         | unknown                   |
| SNH_KENTRA_2014_IMGP0121.JPG | KA3          | 2014-08-12<br>12:40:15 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0122.JPG | KA3          | 2014-08-12<br>12:40:38 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0123.JPG | KA3          | 2014-08-12<br>12:40:50 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0124.JPG | KA3          | 2014-08-12<br>12:41:00 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0125.JPG | KA3          | 2014-08-12<br>12:41:13 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0126.JPG | KA3          | 2014-08-12<br>12:41:24 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | Habitat overview of<br>sediment shore         | unknown                   |
| SNH_KENTRA_2014_IMGP0127.JPG | KA3          | 2014-08-12<br>12:41:44 | 56.76098               | -5.87261                | 56.76098              | -5.87261               | Habitat overview of<br>sediment shore         | unknown                   |
| SNH_KENTRA_2014_IMGP0017.JPG | KB1          | 2014-08-09<br>10:58:22 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0018.JPG | KB1          | 2014-08-09<br>10:58:41 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0019.JPG | KB1          | 2014-08-09<br>10:59:17 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0020.JPG | KB1          | 2014-08-09<br>11:00:15 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0021.JPG | KB1          | 2014-08-09<br>11:02:34 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | 0.25 m <sup>2</sup> quadrat on sediment shore | unknown                   |
| SNH_KENTRA_2014_IMGP0022.JPG | KB1          | 2014-08-09<br>11:04:07 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | Habitat overview of sediment shore            | unknown                   |
| SNH_KENTRA_2014_IMGP0023.JPG | KB1          | 2014-08-09<br>11:04:21 | 56.75690               | -5.85421                | 56.75690              | -5.85421               | Habitat overview of<br>sediment shore         | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                                          | Bearing<br>(degrees |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                              |              | . ,                    | ,                      | ,                       |                       |                        |                                                                                                                                                      | Ť)                  |
| SNH_KENTRA_2014_IMGP0024.JPG | KB2          | 2014-08-09<br>11:08:24 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0025.JPG | KB2          | 2014-08-09<br>11:08:38 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0026.JPG | KB2          | 2014-08-09<br>11:08:53 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0027.JPG | KB2          | 2014-08-09<br>11:09:16 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0028.JPG | KB2          | 2014-08-09<br>11:09:40 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0029.JPG | KB2          | 2014-08-09<br>11:10:12 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | Habitat overview of<br>sediment shore                                                                                                                | unknown             |
| SNH_KENTRA_2014_IMGP0030.JPG | KB2          | 2014-08-09<br>11:10:22 | 56.75525               | -5.85586                | 56.75525              | -5.85586               | Habitat overview of<br>sediment shore                                                                                                                | unknown             |
| SNH_KENTRA_2014_IMGP0031.JPG | KB3          | 2014-08-09<br>11:15:31 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0032.JPG | KB3          | 2014-08-09<br>11:15:46 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0033.JPG | KB3          | 2014-08-09<br>11:16:00 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0034.JPG | KB3          | 2014-08-09<br>11:16:13 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0035.JPG | KB3          | 2014-08-09<br>11:16:26 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | 0.25 m <sup>2</sup> quadrat on sediment shore                                                                                                        | unknown             |
| SNH_KENTRA_2014_IMGP0036.JPG | KB3          | 2014-08-09<br>11:16:38 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | Habitat overview of<br>sediment shore. Looking<br>NW from KB3 towards<br>mouth of Kentra Bay and<br>Eigg beyond. Abundant<br>Arenicola casts evident | 315                 |

| Image identifier             | Site<br>code | Date and<br>time (UT)  | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                                                   | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0037.JPG | KB3          | 2014-08-09<br>11:16:52 | 56.75294               | -5.85820                | 56.75294              | -5.85820               | Habitat overview of<br>sediment shore. View<br>south of west from KB3<br>looking across channel of<br>Fhaodhail Bhan.<br>Abundant Arenicola casts<br>evident. | 250                       |
| SNH_KENTRA_2014_IMGP0079.JPG | KC1          | 2014-08-11<br>11:18:55 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | 0.25 m2 quadrat on sediment shore. Abundant Arenicola in wet muddy medium sand.                                                                               | unknown                   |
| SNH_KENTRA_2014_IMGP0080.JPG | KC1          | 2014-08-11<br>11:19:04 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | 0.25 m2 quadrat on sediment shore. Abundant Arenicola in wet muddy medium sand.                                                                               | unknown                   |
| SNH_KENTRA_2014_IMGP0081.JPG | KC1          | 2014-08-11<br>11:19:17 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | 0.25 m2 quadrat on sediment shore. Abundant arenicola in wet muddy medium sand.                                                                               | unknown                   |
| SNH_KENTRA_2014_IMGP0082.JPG | KC1          | 2014-08-11<br>11:19:28 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | 0.25 m2 quadrat on sediment shore. Abundant Arenicola in wet muddy medium sand.                                                                               | unknown                   |
| SNH_KENTRA_2014_IMGP0083.JPG | KC1          | 2014-08-11<br>11:19:44 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | 0.25 m2 quadrat on sediment shore. Abundant Arenicola in wet muddy medium sand.                                                                               | unknown                   |
| SNH_KENTRA_2014_IMGP0084.JPG | KC1          | 2014-08-11<br>11:20:00 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | Habitat overview of shore at KC1 looking east.                                                                                                                | 90                        |
| SNH_KENTRA_2014_IMGP0085.JPG | KC1          | 2014-08-11<br>11:20:07 | 56.75118               | -5.85019                | 56.75118              | -5.85019               | Habitat overview of shore at KC1 looking west.                                                                                                                | 270                       |

| Image identifier             | Site<br>code | Date and<br>time (UT)  | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                               | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0072.JPG | KC2          | 2014-08-11<br>11:15:52 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | 0.25 m2 quadrat on<br>sediment shore. Sparse<br>Arenicola in gravelly sand<br>with Littorina and F.ves    | unknown                   |
| SNH_KENTRA_2014_IMGP0073.JPG | KC2          | 2014-08-11<br>11:16:00 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | 0.25 m2 quadrat on<br>sediment shore. Sparse<br>Arenicola in gravelly sand<br>with Littorina and F.ves    | unknown                   |
| SNH_KENTRA_2014_IMGP0074.JPG | KC2          | 2014-08-11<br>11:16:16 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | 0.25 m2 quadrat on sediment shore. Sparse Arenicola in gravelly sand with Littorina and F.ves             | unknown                   |
| SNH_KENTRA_2014_IMGP0075.JPG | KC2          | 2014-08-11<br>11:16:24 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | 0.25 m2 quadrat on sediment shore. Sparse Arenicola in gravelly sand with Littorina and F.ves             | unknown                   |
| SNH_KENTRA_2014_IMGP0076.JPG | KC2          | 2014-08-11<br>11:16:33 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | 0.25 m2 quadrat on<br>sediment shore. Sparse<br>Arenicola in gravelly sand<br>with Littorina and F.ves    | unknown                   |
| SNH_KENTRA_2014_IMGP0077.JPG | KC2          | 2014-08-11<br>11:16:48 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | Habitat overview of shore<br>at KC2 looking east to<br>Arevegaig.                                         | 90                        |
| SNH_KENTRA_2014_IMGP0078.JPG | KC2          | 2014-08-11<br>11:16:59 | 56.75026               | -5.85132                | 56.75026              | -5.85132               | Habitat overview of shore at KC2 looking south-west                                                       | 225                       |
| SNH_KENTRA_2014_IMGP0065.JPG | KC3          | 2014-08-11<br>11:13:18 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | 0.25 m2 quadrat on<br>sediment shore. Littorina<br>littorea on gravel/stones<br>with barnacles on stones. | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                 | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0066.JPG | KC3          | 2014-08-11<br>11:13:28 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | 0.25 m2 quadrat on<br>sediment shore. Littorina<br>littorea on gravel/stones<br>with barnacles on stones.   | unknown                   |
| SNH_KENTRA_2014_IMGP0067.JPG | KC3          | 2014-08-11<br>11:13:37 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | 0.25 m2 quadrat on sediment shore. Littorina littorea on gravel/stones.                                     | unknown                   |
| SNH_KENTRA_2014_IMGP0068.JPG | KC3          | 2014-08-11<br>11:13:48 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | 0.25 m2 quadrat on<br>sediment shore.<br>Occasional Mytilus on<br>gravel/stones with Littorina<br>littorea. | unknown                   |
| SNH_KENTRA_2014_IMGP0069.JPG | KC3          | 2014-08-11<br>11:13:59 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | 0.25 m2 quadrat on<br>sediment shore.<br>Occasional Mytilus on<br>gravel/stones with Littorina<br>littorea. | unknown                   |
| SNH_KENTRA_2014_IMGP0070.JPG | KC3          | 2014-08-11<br>11:14:17 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | Habitat overview of shore<br>at KC3 looking east across<br>river channel to Arevegaig.                      | 90                        |
| SNH_KENTRA_2014_IMGP0071.JPG | KC3          | 2014-08-11<br>11:14:29 | 56.74964               | -5.85207                | 56.74964              | -5.85207               | Habitat overview of shore<br>at KC3 looking west to<br>mouth of Kentra Bay.                                 | 270                       |
| SNH_KENTRA_2014_IMGP0058.JPG | KC4          | 2014-08-11<br>11:11:09 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | 0.25 m2 quadrat on sediment shore. Arenicola in clean medium sand, occ dead shells.                         | unknown                   |
| SNH_KENTRA_2014_IMGP0059.JPG | KC4          | 2014-08-11<br>11:11:28 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | 0.25 m2 quadrat on sediment shore. Arenicola in clean medium sand, drift algae.                             | unknown                   |
| SNH_KENTRA_2014_IMGP0060.JPG | KC4          | 2014-08-11<br>11:11:40 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | 0.25 m2 quadrat on sediment shore. Arenicola in clean medium sand.                                          | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                       | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0061.JPG | KC4          | 2014-08-11<br>11:11:52 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | 0.25 m2 quadrat on sediment shore. Arenicola in clean medium sand, drift algae.                                                   | unknown                   |
| SNH_KENTRA_2014_IMGP0062.JPG | KC4          | 2014-08-11<br>11:12:02 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | 0.25 m2 quadrat on sediment shore. Arenicola in clean medium sand, drift algae and occ dead shells.                               | unknown                   |
| SNH_KENTRA_2014_IMGP0063.JPG | KC4          | 2014-08-11<br>11:12:18 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | Habitat overview of shore<br>at KC4 looking west to<br>mouth of Kentra Bay.                                                       | 270                       |
| SNH_KENTRA_2014_IMGP0064.JPG | KC4          | 2014-08-11<br>11:12:28 | 56.74924               | -5.85254                | 56.74924              | -5.85254               | Habitat overview of shore at KC4 looking south-west across river channel.                                                         | 225                       |
| SNH_KENTRA_2014_IMGP0005.JPG | KD1          | 2014-08-08<br>10:25:22 | 56.74318               | -5.84931                | 56.74318              | -5.84931               | 0.25 m2 quadrat on<br>sediment shore. Gravel on<br>muddy med - coarse sand.<br>Some pits. 1 possible<br>Arenicola cast top right. | unknown                   |
| SNH_KENTRA_2014_IMGP0006.JPG | KD1          | 2014-08-08<br>10:25:50 | 56.74318               | -5.84931                | 56.74318              | -5.84931               | 0.25 m2 quadrat on<br>sediment shore. Gravel on<br>muddy med - coarse sand.<br>Occ Fucus spiralis on<br>small stones.             | unknown                   |
| SNH_KENTRA_2014_IMGP0007.JPG | KD1          | 2014-08-08<br>10:26:08 | 56.74318               | -5.84931                | 56.74318              | -5.84931               | 0.25 m2 quadrat on<br>sediment shore. Gravel on<br>muddy med - coarse sand.<br>Occ Fucus spiralis on<br>small stones.             | unknown                   |
| SNH_KENTRA_2014_IMGP0008.JPG | KD1          | 2014-08-08<br>10:26:24 | 56.74318               | -5.84931                | 56.74318              | -5.84931               | 0.25 m2 quadrat on<br>sediment shore. Gravel on<br>muddy med - coarse<br>sand. Occ Fucus spiralis<br>on small stones.             | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                                                    | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0009.JPG | KD2          | 2014-08-08<br>10:27:52 | 56.74361               | -5.84938                | 56.74361              | -5.84938               | 0.25 m2 quadrat on<br>sediment shore. Scattered<br>gravel and dead bivalve<br>shells on med muddy<br>sand.                                                     | unknown                   |
| SNH_KENTRA_2014_IMGP0010.JPG | KD2          | 2014-08-08<br>10:28:07 | 56.74361               | -5.84938                | 56.74361              | -5.84938               | 0.25 m2 quadrat on sediment shore. Scattered gravel and dead bivalve shells on med muddy sand.                                                                 | unknown                   |
| SNH_KENTRA_2014_IMGP0011.JPG | KD2          | 2014-08-08<br>10:28:20 | 56.74361               | -5.84938                | 56.74361              | -5.84938               | 0.25 m2 quadrat on<br>sediment shore. Muddy<br>medium sand with<br>occasional Fucus<br>vesiculosus on stones.                                                  | unknown                   |
| SNH_KENTRA_2014_IMGP0012.JPG | KD2          | 2014-08-08<br>10:28:41 | 56.74361               | -5.84938                | 56.74361              | -5.84938               | 0.25 m2 quadrat on<br>sediment shore. Arenicola<br>burrow and cast (indistinct<br>through rain) in med<br>muddy sand with scattered<br>gravel and dead shells. | unknown                   |
| SNH_KENTRA_2014_IMGP0013.JPG | KD3          | 2014-08-08<br>10:29:51 | 56.74400               | -5.84944                | 56.74400              | -5.84944               | 0.25 m2 quadrat on sediment shore. Arenicola burrows and casts in medium muddy sand with occ. dead shells.                                                     | unknown                   |
| SNH_KENTRA_2014_IMGP0014.JPG | KD3          | 2014-08-08<br>10:30:08 | 56.74400               | -5.84944                | 56.74400              | -5.84944               | 0.25 m2 quadrat on sediment shore. Arenicola burrows and casts in medium muddy sand with occ. dead shells.                                                     | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0015.JPG | KD3          | 2014-08-08<br>10:30:18 | 56.74400               | -5.84944                | 56.74400              | -5.84944               | 0.25 m2 quadrat on sediment shore. Arenicola burrows and casts in medium muddy sand with occ. dead shells and drift algae. | unknown                   |
| SNH_KENTRA_2014_IMGP0016.JPG | KD3          | 2014-08-08<br>10:30:34 | 56.74400               | -5.84944                | 56.74400              | -5.84944               | 0.25 m2 quadrat on sediment shore. Arenicola burrows and casts in medium muddy sand with occ. dead shells and drift algae. | unknown                   |
| SNH_KENTRA_2014_IMGP0051.JPG | KE1          | 2014-08-10<br>10:38:17 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | 0.25 m2 quadrat on sediment shore. Arenicola in wet muddy sand.                                                            | unknown                   |
| SNH_KENTRA_2014_IMGP0052.JPG | KE1          | 2014-08-10<br>10:38:31 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | 0.25 m2 quadrat on sediment shore. Arenicola in wet muddy sand.                                                            | unknown                   |
| SNH_KENTRA_2014_IMGP0053.JPG | KE1          | 2014-08-10<br>10:38:47 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | 0.25 m2 quadrat on<br>sediment shore. Arenicola<br>in wet muddy sand, with<br>Fucus.spiralis on small<br>stones.           | unknown                   |
| SNH_KENTRA_2014_IMGP0054.JPG | KE1          | 2014-08-10<br>10:39:02 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | 0.25 m2 quadrat on sediment shore. Arenicola in wet muddy sand.                                                            | unknown                   |
| SNH_KENTRA_2014_IMGP0055.JPG | KE1          | 2014-08-10<br>10:39:14 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | 0.25 m2 quadrat on sediment shore. Arenicola in wet muddy sand.                                                            | unknown                   |
| SNH_KENTRA_2014_IMGP0056.JPG | KE1          | 2014-08-10<br>10:39:39 | 56.74500               | -5.87415                | 56.74500              | -5.87415               | Habitat overview of shore at KE1 looking north.                                                                            | 360                       |
| SNH_KENTRA_2014_IMGP0057.JPG | KE1          | 2014-08-10<br>10:39:45 |                        |                         |                       |                        | Habitat overview of shore at KE1 looking east.                                                                             | 90                        |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0044.JPG | KE2          | 2014-08-10<br>10:35:08 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | 0.25 m2 quadrat on sediment shore. Arenicola with filamentous green algae.                                                 | unknown                   |
| SNH_KENTRA_2014_IMGP0045.JPG | KE2          | 2014-08-10<br>10:35:28 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | 0.25 m2 quadrat on sediment shore. Arenicola with Fucus vesiculosus on small stone.                                        | unknown                   |
| SNH_KENTRA_2014_IMGP0046.JPG | KE2          | 2014-08-10<br>10:35:42 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | 0.25 m2 quadrat on sediment shore. Arenicola with filamentous green algae.                                                 | unknown                   |
| SNH_KENTRA_2014_IMGP0047.JPG | KE2          | 2014-08-10<br>10:35:57 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | 0.25 m2 quadrat on sediment shore. Arenicola with Fucus vesiculosus on small stone.                                        | unknown                   |
| SNH_KENTRA_2014_IMGP0048.JPG | KE2          | 2014-08-10<br>10:36:07 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | 0.25 m2 quadrat on sediment shore. Arenicola with filamentous green algae.                                                 | unknown                   |
| SNH_KENTRA_2014_IMGP0049.JPG | KE2          | 2014-08-10<br>10:36:17 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | Habitat overview of shore at KE2 looking east.                                                                             | 90                        |
| SNH_KENTRA_2014_IMGP0050.JPG | KE2          | 2014-08-10<br>10:36:27 | 56.74551               | -5.87335                | 56.74551              | -5.87335               | Habitat overview of shore at KE2 looking north-east.                                                                       | 45                        |
| SNH_KENTRA_2014_IMGP0038.JPG | KE3          | 2014-08-10<br>10:24:19 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | 0.25 m2 quadrat on sediment shore. Abundant Arenicola in clean medium sand, hummocks due to casts and borrows.             | unknown                   |
| SNH_KENTRA_2014_IMGP0039.JPG | KE3          | 2014-08-10<br>10:24:35 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | 0.25 m2 quadrat on<br>sediment shore. Abundant<br>Arenicola in clean medium<br>sand, hummocks due to<br>casts and borrows. | unknown                   |

| Image identifier             | Site<br>code | Date and time (UT)     | Latitude<br>(original) | Longitude<br>(original) | Latitude<br>(dec deg) | Longitude<br>(dec deg) | Description                                                                                                                                | Bearing<br>(degrees<br>T) |
|------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| SNH_KENTRA_2014_IMGP0040.JPG | KE3          | 2014-08-10<br>10:24:59 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | 0.25 m2 quadrat on<br>sediment shore. Abundant<br>Arenicola in clean medium<br>sand, hummocks due to<br>casts and burrows, drift<br>algae. | unknown                   |
| SNH_KENTRA_2014_IMGP0041.JPG | KE3          | 2014-08-10<br>10:25:19 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | 0.25 m2 quadrat on<br>sediment shore. Abundant<br>Arenicola in clean medium<br>sand, hummocks due to<br>casts and burrows.                 | unknown                   |
| SNH_KENTRA_2014_IMGP0042.JPG | KE3          | 2014-08-10<br>10:25:51 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | 0.25 m2 quadrat on<br>sediment shore. Abundant<br>Arenicola in clean medium<br>sand, hummocks due to<br>casts and burrows.                 | unknown                   |
| SNH_KENTRA_2014_IMGP0043.JPG | KE3          | 2014-08-10<br>10:26:07 | 56.74787               | -5.86976                | 56.74787              | -5.86976               | Habitat overview of shore at KE3 looking north.                                                                                            | 360                       |

Table 4.2Log of video data collected in Kentra Bay

| MP4 file            | Method    | Video time<br>code<br>(start) | Video time<br>code (end) | Substrate                                                                            | Biotope                | Surveyors                                   |
|---------------------|-----------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
| KC_channel.mp<br>4  | Hand-held | 00:00:00                      | 00:00:37                 | sediment flats                                                                       |                        | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| Station_KC4.mp<br>4 | Hand-held | 00:00:00                      | 00:00:39                 | slightly muddy<br>medium sand, a<br>few dead shells,<br>some patches of<br>gravel on | LS.LSa.MuSa.Mac<br>Are | Alastair Lyndon, Jenna Brash, Eiona Rodgers |

| MP4 file                                  | Method    | Video time<br>code | Video time<br>code (end) | Substrate                                                                      | Biotope                   | Surveyors                                   |
|-------------------------------------------|-----------|--------------------|--------------------------|--------------------------------------------------------------------------------|---------------------------|---------------------------------------------|
|                                           |           | (start)            |                          |                                                                                |                           |                                             |
|                                           |           |                    |                          | surface                                                                        |                           |                                             |
| KC3_KC4_2014<br>boundary.mp4              | Hand-held | 00:00:00           | 00:00:36                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC3_KC4_2003<br>boundary.mp4              | Hand-held | 00:00:00           | 00:00:24                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| Station_KC3.mp<br>4                       | Hand-held | 00:00:00           | 00:00:34                 | gravel on clean<br>medium sand<br>with dead shells<br>and stones               | LS.LSa.MuSa.Hed<br>MacEte | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC3_upper<br>muddy_sand_bo<br>undary.mp4  | Hand-held | 00:00:00           | 00:00:50                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC2_lower_mud<br>dy_sand_bound<br>ary.mp4 | Hand-held | 00:00:00           | 00:00:34                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| Station_KC2.mp<br>4                       | Hand-held | 00:00:00           | 00:00:35                 | gravel and dead<br>shells on<br>medium sand                                    | LS.LSa.MuSa.Hed<br>MacEte | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC1_KC2_boun<br>dary.mp4                  | Hand-held | 00:00:00           | 00:00:41                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| Station_KC1.mp<br>4                       | Hand-held | 00:00:00           | 00:00:52                 | slightly muddy<br>partially rippled<br>medium sand<br>with occ. dead<br>shells | LS.LSa.MuSa.Mac<br>Are    | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC1_upper_bou<br>ndary.mp4                | Hand-held | 00:00:00           | 00:00:30                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |
| KC_transect_ma<br>rker.mp4                | Hand-held | 00:00:00           | 00:00:48                 |                                                                                |                           | Alastair Lyndon, Jenna Brash, Eiona Rodgers |

## www.snh.gov.uk

© Scottish Natural Heritage 2015 ISBN: 978-1-78391-209-4

Policy and Advice Directorate, Great Glen House, Leachkin Road, Inverness IV3 8NW T: 01463 725000

You can download a copy of this publication from the SNH website.





All of nature for all of Scotland Nàdar air fad airson Alba air fad